Comparative economics of vanya with mulberry cocoon production in India

G.R. Manjunatha*, P.A. Sangannavar, G.R. Halagundegowda, A.S. Nazeer, S.M. Moorthy and V. Sivaprasad
Central Silk Board, Bengaluru-560 068, India
*Corresponding Author Email: mgr.dvg@gmail.com

Abstract

Aim: To compare the remunerativeness of Mulberry, Tasar, Eri and Muga based sericulture enterprises.

Methodology: An empirical analysis was undertaken to compare the economics of mulberry and non-mulberry cocoon production in India, utilizing the available data from Central Silk Board using descriptive statistics and suitable ratios.

Results: The study indicated that returns per rupee of investment in Mulberry (1.66), Tasar (1.60), Eri (1.88) and Muga (2.07) were higher compared to agriculture crop enterprises (National Silk Policy-2020), besides being of short duration with frequent assured income at least for three to six times in a year.

Interpretation: The Mulberry and Eri silkworm cocoon production is highly remunerative enterprise and attracts the youths, because of its domesticated nature, short duration and women friendly enterprise.

Key words: Cocoon production, Economics, Eco-friendly, Mulberry, Sericulture enterprises, Vanya

Introduction

India is the second largest silk producer (40%) after China (54%) with CAGR of 4% and notable export earnings over the years (International Sericulture Commission, 2022). Sericulture in the nation is a subsidiary women-friendly activity and yields monthly/periodical income throughout the year. Sericulture is an eco-sustainable agroenterprise (Gregory and Brian, 2022). Currently, 34903 metric tons (2021-22) of raw silk is being produced in India (71% mulberry and 29% non-mulberry silk) with a 4% CAGR (Central Silk Board, 2015-2022a) reflecting the country’s economy gains in terms of employment generation (~87.3 lakh persons) and foreign export (~Rs.1500 crores) earnings. Sericulture in India is a culturally practiced tradition by the farming communities, now it has turned into remunerative enterprise/venture across silk value chain since China’s silk production has declined drastically in the last six years, i.e., from 170000 metric tons (2015) to 467000 metric tons (2021).

An analysis of the trends in international silk production (Central Silk Board, 2003) suggests that sericulture has better prospects for growth in developing countries like India than in the advanced countries. Accordingly, India has a bright scope (pleasure cum pressure) to lead the sericulture industry globally with diversified silk varieties (Mulberry in Southern India, North and North West India; Tasar in Central and Northern India and Eri and Muga in North-eastern India). Domesticated mulberry silkworm (Bombyx mori) is reared on Morus spp. across varied agro-climatic regions (tropical, sub-tropical and temperate) of India for cocoon production. Whereas tasar silkworm (Antheraea mylitta) rearing is restricted to Central and Northern regions on different host plants (Terminalia arjuna, T. tomentosa and Shorea robusta); Muga (A. assamensis) silkworm rearing is confined to North-eastern region on different host plants (Persia bombycina, Litsae monopetala and L. salicifolia) in out-doors, the semi-domesticated Eri silkworm (Samia ricini) is reared in North-east region and few areas of South India utilizing various host plants (Ricinus communis, Manihot esculanta and Heteropanax fragrans). Besides, it is known that India is the largest silk consumer and importer from other countries as domestic production of raw silk is not able to meet the industry requirements (Kumaresan, 2022).

To give further fillip for sericulture industry and self-sufficient, Government of India has implemented Centrally Sponsored Scheme (CSS) called Silk Samagra-2 (2021-22 to 2025-26) for transferring beneficiary oriented technologies through private and public players (State Sericulture Department, Line Departments, NGOs, Universities, etc.) across the states. Silk Samagra-2 has set a target of producing 46,500 metric tons raw silk with an Import substitute BV silk production metric tons of 12250 by the end of year 2025-26. For successful sericulture, supply of quality leaves (feed), races (breed), seeds (disease free) and favorable rearing seasons/climate is indispensible. Sericulture farmers expect more economic returns on incurring minimal expenditure in short duration without giving due consideration for above mentioned factors. Hence, the present study aimed at testing the hypothesis of how remunerative is the sericulture enterprise (cocoon production) among the sericultural crops (Mulberry, Eri, Muga and Tasar).

Materials and Methods

The secondary data pertinent to costs and returns of Mulberry, Eri, Muga and Tasar cocoon production was collected from various reports/records of sericulture (Central Silk Board Annual Reports from 2015 to 2022 and CSB Seri-info Survey Report 2022b). The data was analyzed using complete budgeting technique with cost concepts (Subbareddy et al., 2022; Manjunatha et al., 2020a) and descriptive statistics (measure of central tendency and dispersions) for meaningful interpretations (Sahu, 2007). To compare the cocoon production enterprises in sericulture, Benefit: Cost (B:C) ratio indicator was also employed, as it reveals the returns per rupee investment on enterprise.

Results and Discussion

Table 1 to 3 provides information on sector-wise sericulture outline, costs incurred and returns realized form cocoon production across sericulture crops, share of expenditure incurred on major inputs in the total cost of respective cocoon production. The sector-wise sericulture profile across India depicted in Table 1 revealed that the maximum proportion of area was covered by V-1 mulberry variety for rearing silkworm hybrid FC1xFC2. In case of Eri, castor had more acreage in road-side followed by systematic/forest places, and local race of Eri silkworm was preferred for rearing either in bunch or tray method (Utpal and Das, 2010 a, b). Kessaru and Cassava are preferred as an alternative host plants for ericulture (Sakhthivel, 2016) whereas som, Muga host plant was observed as maximum proportion utilized for Muga rearing with domesticated Muga silkworms. Similarly, Tropical Tasar area dominated with host plants of Arjun and Asan was observed in forest regions. Tasar silkworm rearing was conducted with daba eco races and CTR-14 on an average of two crops in a year (Vishak et al., 2020).

Besides, intensity of silkworm crops (number of crops per year) was highest in mulberry followed by Eri, Tasar and Muga sectors, which is well reflected in the quantum dfls intake by the farmers. Further, the rearing profile of each sector indirectly reveals the rate of technology adopted at field level (Khan et al., 2022). Accordingly, the concerned state departments/players should chalk-out the right action plans for strengthening the areas in adopting technologies at higher rate (like replacing local silkworm races/hybrids, host plant varieties, mountages, traditional system, etc., with latest technologies/practices), as developed by Central Silk Board R&D institutes. The results revealed that the returns per rupee of investment (B:C ratio) in cocoon production was higher in Muga (2.07), followed by Eri (1.88), Mulberry (1.68) and Tasar (1.60). Though the Muga cocoon production is more profitable, its area coverage is miniscule (Table 1). Besides, Muga (polyphagous) has emerged...
as profitable since its cocoon production requires relatively lesser inputs such as robust ecoraces, more reliance on family labour, meager application of disinfectants and rearing on forest plantation (Pandey et al., 2010). Whereas, mulberry silkworm cocoon production is intense (wrt area coverage and frequency) in South India and solely depends on Morus spp. with systematic and advanced rearing practices (Choudari et al., 2020; Manjunatha et al., 2020b). In terms of total or net returns, the Mulberry sector occupies first position followed Eri, Muga and Tasar (Table 2). Further, the risk element is crucial in success of...
sericulture enterprise. It is lower in case of Mulberry and Eri crops because of indoor rearing practices and organized marketing system. The study is undertaken in relevance to test the hypothesis of how remunerative is the sericulture enterprise (cocoon production) among the sericultural crops (Mulberry, Eri, Muga and Tasar). In toto, sericulture has emerged as a remunerative enterprise, especially in Mulberry and Eri cocoon production (Soundarya et al., 2022; Jayaprakash et al., 2008; Sakthivel et al., 2010) as compared to the remaining and even other crop enterprises (CSB-National Silk Policy, 2020b), as, sericulture assure returns at least three to six times in a year, even ten times per year in the southern states of India mulberry sericulture (Dewangan, 2013).

Tasar and Muga are reared in outdoors/natural conditions (tree based rearing without any controlled condition like Mulberry and Eri) and had chances to crop losses by sudden climate and pest outbreaks (Gadad et al., 2022), otherwise investment for enterprise is always low as compared to Mulberry and Eri silkworm rearing. Besides, it is a nature-cum family friendly farming under the concept of eco-economical life cycle assessment (LCA). Quality leaves (feed), races (breed) and seeds (disease free) are the crucial inputs deciding success of cocoon production, besides rearing skills and marketing (Afroz et al., 2018). The cocoon production activity across the sectors has emerged as remunerative (return per rupee investment in Mulberry: 1.66, Tasar: 1.60, Eri: 1.88 and Muga: 2.07) attracting the youths to become entrepreneurs in sericulture industry (Manjunatha et al., 2021).

Acknowledgment

Authors are thankful to the Central Silk Board for providing valuable information in executing this study.

Authors’ contribution: G.R. Manjunatha: Designed the study, involved in execution, investigation, analysis and manuscript preparation; P.A. Sangannavar: Fine-tuned analysis and gave critical comments to improve the manuscript; G.R. Halagundegowda: Contributed for providing sericulture data and related information; A.S. Nazeer: Helped in execution and gave inputs; S.M. Moorthy: Helped in execution of the study; V. Sivaprasad: Edited the manuscript and allowed for execution of the work.

Funding: Not applicable.

Research content: The research content of manuscript is original and has not been published elsewhere.

Ethical approval: Not applicable.

Conflict of interest: The authors declare that there is no conflict of interest.

Data availability: Central Silk Board Annual Reports from 2015 to 2022 and CSB Seri-info Survey Report 2022.

Consent to publish: All authors agree to publish the paper in Journal of Environmental Biology.

References

