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Abstract

During the last few decades, aquaculture as a useful animal protein providing sector intensifies to meet the growing world population demands. 
Although fish culture technological advancement has resulted in increased production, intensive technology has negatively affected the 
environment—consequently, aquaculture 
research efforts have been diverted towards 
developing sustainable culture technology. 
Introducing algae and bacteria singly or in 
c o m b i n a t i o n  i n  a q u a c u l t u r e  w a s  
advantageous both by ex-vivo and in-vivo 
culture techniques. 

Utilization of microbial consortium in 
aquaculture can help to construct three pillars 
(social, economical, and ecological) of 
sustainability by improving water quality, 
reducing dependency on a wild fish stock as a 
feed ingredient, improving the health status of 
animals, and increasing economic returns 
along with protection of the environment. 
Numerous fruitful research outcomes on 
using algal-bacterial systems are available for 
its application in aquaculture. In this context, 
the present article highlights an updated 
review of current research trends on various 
aspects such as application of algal-bacterial 
consortia for aquaculture, available 
technologies based on their interaction, and 
recommendations for further improvement. This review will also provide some critical clues for the standardization of novel fish culture techniques based 
on microbial interaction.
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association of photosynthetic microalgae and heterotrophic 
bacteria (Catarina and Xavier, 2012). It is also found that 
incorporation of algal bacterial system helps in improving the 
water quality by removal of harmful nitrogenous content from 
culture environment (Han et al., 2019; He et al., 2017; Pacheco-
Vega et al., 2018; Yadav et al., 2021). The natural anti-microbial 
compounds or biomolecules in some microalgal species can 
serve as immunostimulants and improve the cultured organism’s 
health (Charoonnart et al., 2018).

The “green water” technique has beneficial effects on 
health, survival rates and resistance of different organisms 
(Falaise et al., 2016). Therefore, microalgae are regarded as a 
promising alternative to replace fishmeal and fish oil, considering 
nutritional and health benefits (Shah et al., 2018). Earlier 
research attempts have been made to explore the beneficial 
effect of either algae or bacterial in aquaculture systems with rare 
attempts to explore combined benefits. It is necessary to have a 
detailed and updated review of algal-bacterial associations-
based culture technologies for further progress towards 
sustainability. Therefore, the present article attempted a state-of-
the-art review on the application of algae in combination with 
bacteria as a microbial management tool with possibilities of 
existing aquaculture system modification to increase the 
system’s performance in regards to sustainability (Fig. 1). 

Formation of Algal-Bacterial Film and Floc: The algal-bacterial 
mass is naturally found in biofilm attached to the submerged 
surface or in the form of a settled floc. Biofilm formation is a 
complex cyclic process involving initial, maturation, and dispersal 
phase (Khatoon et al., 2018). During the initial phase, free-
floating microorganisms attach to a surface by the surface tension 
components and hydrophobic effects (Briandet et al., 2001; 
Takahashi et al., 2010). Extracellular polymeric substance (EPS), 
a sticky matrix, plays a vital role in biofilm formation. EPS consist 
of water passages to distribute nutrients and oxygen to involved 
microorganisms. This microbial association protects itself from 
adverse environmental conditions. Once established, 
subsequent growth of biofilm occurs by cell division and 
recruitment from the outside environment until they become fully 
mature. After maturation, biofilm dispersion is caused by 
enzymatic degradation of EPS enabling biofilms to spread and 
colonize on new surfaces (Fig. 2). 

Biofloc is a loosely clumped mass of aggregates of 
bacteria, algae, or protozoa, held together in a mucus matrix of 
extracellular polymeric substance (EPS) along with particulate 
organic matter. Mainly filamentous microorganisms are involved 
in the formation of biofloc, where cilia of these microorganisms 
entrap the suspended solids and other substances (Harun et al., 
2019). Feces, uneaten feed, and sludge particles held together by 
filamentous and other microbes cause floc formation in an 
aquaculture medium (Crab et al., 2010). The biofloc is distributed 
in the water column due to intense aeration or loosely attached to 
the tank wall surface (Fig. 2). Biofloc formation is affected by 
carbon source, nitrogen types, and aeration intensity (Harun et 
al., 2019). Different types of carbon sources such as acetate, 
cassava meal, cellulose, corn flour, dextrose, glycerol, 

Introduction

Aquaculture is the fastest-growing food production sector 
in agriculture. During the last few decades, aquaculture has 
shown tremendous growth through intensive aquatic organism 
culture technology. World aquaculture production of farmed 
aquatic animals has grown on average at 5.3 percent per year 
from 2001 to the level of 82.1 million tonnes in 2018 (FAO, 2020). 
Along with increased production, this development phase has 
caused some negative impacts on the environment, such as 
habitat destruction, utilization of fish meal and fish oil in feeds, 
wastewater discharge, wild seed for stocking, genetic 
contamination, disease outbreak, and problems associated with 
overuse of antibiotics. Accordingly, researchers have surveyed 
prerequisites of standardized sustainable aquaculture 
technology with respect to social, economic and environmental 
benefits (Martinez-Porchas and Martinez-Cordova, 2012). 
Introducing algae-bacteria consortia in the aquaculture can be 
partially replaced sole with feed-based system to take advantage 
of feed optimisation by reducing the quantity of external feed, 
improvement of water quality, and health of cultured organisms 
(Azim et al., 2001; Pandey et al., 2014).

Even though microalgae and bacteria are the micro-
players, they play macro-roles in nutrient cycling and energy flow 
in an aquatic ecosystem (Tandon et al., 2017). Microalgae are the 
primary producers in the aquatic ecosystem and constitute the 
main natural food components for its residents. A close 
association exists between bacteria and algae for stabilizing 
ecosystems (Ramanan et al., 2016). Microalgae can support the 
aquaculture system by supplying oxygen to all biological activities 
while bacteria detoxify the environment apart from collectively 
acting as a direct food source to the cultured animal (Avnimelech, 
2014; Taziki et al., 2016). Thus, the intervention of microalgae and 
bacteria can provide a path for sustainable aquaculture 
technologies for handling environmental concerns of aquaculture 
activities. The relationship between algae and bacteria has been 
widely studied for its applicability in aquaculture. Bacteria and 
algae interact by performing different associations like mutualism, 
commensalism, and parasitism (Ramanan et al., 2016). Often, 
microbes and algae do a collective work that cannot perform the 
same singly (Yao et al., 2019). All nitrogen applied in feed or 
fertilizer and not harvested in biomass is a potential ammonia 
source. Ammonia in the aquaculture environment is produced by 
the decomposition of meal and faecal matter.

In nitrification, Nitrosomonas bacteria oxidize ammonia to 
nitrite and Nitrobacter bacteria oxidize nitrite to nitrate. 
Simultaneously, microalgae have a great capacity to remove 
combined nitrogen compounds, ammonia, nitrate, and nitrite from 
the aquatic environment. Microalgae absorb ammonium and 
convert it into organic nitrogen in the form of a protein. It is well 
known that microalgae and bacterial biomass serve as a natural 
food source for cultured animals. The natural biota in the form of 
flocculated particles consisting mainly of microalgae and 
heterotrophic bacteria contribute substantially to the nutrition of 
aquatic organisms (Burford et al., 2004). The nutrients present in 
the wastewater are converted into protein biomass due to the 
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(2007) reported that biofilm (periphyton) developed on a synthetic 
substrate immersed in a wastewater reservoir was characterized 
by the domination of euglenophytes during the initial phase; 
Carchesium polypinum during the intermediate stage and 
diatoms and chrysophyceans dominated the mature stage with a 
contribution of detritus more than 50%. However, some other 
studies reported diverse microalgal species composition 
comprising green algae or diatom as a dominant one on the 
substrate provided for attachment (Thompson et al., 2002; 
Khatoon et al., 2007; Kumar et al., 2015; Gogoi et al., 2018).

Improvement of water quality in the aquaculture: The self-
purification process achieved via algal-bacterial symbiosis 
system is a widely known environment mitigation strategy. 
Several investigations were attempted to analyze the 
bioremediation of hazardous pollutants and heavy metals 
through algal-bacterial consortium (Pham, 2018; Subash 
chandra bose et al., 2013). The algal–bacterial association 
detoxifies and assimilates metals through various physico-
chemical processes, including physical adsorption, covalent 
bonding, ion exchange and chemisorption, surface precipitation, 
redox reactions, or crystallization (Ramanan et al., 2016).  
Nutrients like organic carbon, dissolved organic nitrogen, 
dissolved organic phosphorus, sulfur, Vitamin B, and 
siderophores are exchanged in symbiotic algal-bacterial 
interaction for mutual benefits (Yao et al., 2019).

glucose, molasses, sorghum meal, tapioca, wheat flour, and 
starch have been successfully used separately or in 
combination for biofloc formation in the aquaculture system 
for maintaining appropriate carbon to nitrogen (C:N) ratio 
(Martínez-Córdova et al., 2014). The dynamics of the removal 
of heterotrophic nitrogen are based on the type of organic 
carbon applied. For example, the faster reduction of ammonia 
was observed when simple sugars glucose or molasses were 
applied, while the same process of removal of ammonia 
slowed down with the addition of complex carbohydrates as 
these substances degrade slowly (Ekasari et al., 2019).

Substrate addition for formation algal-microbial consortium 
in the aquaculture: The biofilm colonization was also found to be 
affected by substrate type present in the waterbody. Some fish 
species use biofilm biomass deposited on the substrate as their 
natural food. Many natural and artificial substrates have been 
used to study the deposition of biofilm biomass in the aquaculture 
environment. Natural substrates, mainly bamboo poles or sticks, 
was found more efficient for biofilm formation than other natural or 
artificial substrates (Table 1). Nevertheless, Rai et al. (2008) 
found higher weight gain of carps in bamboo sticks than rice straw 
treated ponds, but comparative economic analysis showed better 
performance in rice straw than bamboo sticks treated ponds. Few 
reports are available on the type of periphytic species developed 
on the substrate provided for attachment. Szlauer-Łukaszewska 

Fig. 1: Benefits of micro-algae and bacteria consortia through nutrient exchange in the aquaculture unit.
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Algal-bacterial consortium in the aquaculture system is 
also more beneficial than a single algal or bacterial system. Single 
bacterial techniques such as probiotics are found to improve the 
growth and health status of cultured organisms, while the single 
algal system acts as a direct food source (Martínez-Córdova et 
al., 2014). The algal-bacterial system merges the advantages of 
both systems and improves the water quality, unlike conventional 
semi-intensive and intensive aquaculture systems where water 
quality deteriorates due to uneaten food and waste products 
generated by cultured organisms (Avnimelech, 2014). Microbial 
films have been reported to improve the water quality parameters 
and alleviate harmful effects of the overloaded population 
(Krishnani et al., 2006a; Krishnani et al., 2009, 2013; Krishnani 
and Kathiravan, 2010). Yadav et al. (2021) reported a significantly 
lower value of total ammonia concentration in the biofilm rearing 
system than sources of clear water fed fish seed rearing system.

The lower values of nitrogenous toxicants in the algal 
bacterial film system can be attributed to their oxidation by 
indigenous ammonia-oxidizing bacteria and nitrite-oxidizing 
bacteria onto the bagasse biofilm (Krishnani et al., 2006a; 
Krishnani et al., 2006b; Krishnani and Kathiravan, 2010). The 
conventional aquaculture systems are generally lower in C : N 
ratios than required for bacterial multiplication (Avnimelech, 
1999). If the carbon and nitrogen (C: N) ratio of the culture 
medium is maintained by the external addition of organic 
carbon, then heterotrophic bacteria possess the capacity to 
convert nitrogenous waste generated into bacterial biomass 
(Schneider et al., 2006). In complementary, algae can fix 
inorganic carbon using sunlight energy and combine the fixed 
carbon with nitrogen and phosphorus at relatively constant 
stoichiometric ratios (Klausmeier et al., 2004). 

Algae releases oxygen and dissolved organic carbon for 
bacterial activities (Muñoz and Guieysse, 2006). In return, the 
bacteria re-mineralize sulfur, nitrogen, and phosphorus with a 
direct supply of carbon dioxide and vitamin B to support 
microalgal growth (Yao et al., 2019). In addition to this, microalgae 
have high efficiency in removing phosphorus, especially on 
immobilized layers (Shi et al., 2007). Heterotrophic bacteria 
prefer high C: N conditions whereas autotrophic organisms favor 
low C: N ratios (Michaud et al., 2006). Several bacteria exhibit an 
inverted curvilinear relationship with C/N and N/P ratio with 
optimum C/N ratio of 8-14:1 for soil, 28-29:1 for water and N/P 
ratio between 3-7:1 (Ghosh and Chattopadhyay, 2005). The 
optimum C: N ratio should be between 14:1 to 30:1 for microbial 
floc formation with heterotrophic bacterial dominance (Silva et al., 
2017). In a biofloc aquaculture system, a C: N ratio of 12–20:1 and 
6:1 is required during the initial biofloc formation and maintenance 
phases, respectively, according to the total ammonia nitrogen 
values (Emerenciano et al., 2017). Thus, the algal-bacterial 
consortium provides the potential to self-purify water quality in 
aquaculture by maintaining proper N:P ratio for autotrophs and C: 
N for heterotrophs by the heterotrophic pathway of nitrogen 
removal, which converts the ammonia nitrogen into bacterial 
biomass without accumulation of nitrite and nitrate (Ebeling et al., 
2006). Algal microbial floc produced by exposing culture system 
to natural light popularly known as “Green water biofloc” while 

indoor system known as “Brown water biofloc” (Wasave et al., 
2020a). However, there is limited information available for 
producing optimum and selective microbial biomass by inputting 
the required level of nutrients and light intensity. In addition to the 
application of water quality improvement, algal-bacterial 
population dynamics study over a period enables timely 
prediction and controls the harmful algal bloom in an aquatic 
ecosystem (Srivastava et al., 2015).

Sources of The main and costly ingredient of fish feed 
is fishmeal derived from wild fish harvests. It is estimated that 
approximately 1 kg of wild fish is required to produce 4.5 kg of 
farmed fish (IFFO, 2017). The use of wild fish stock to produce 
farm fish is not a sustainable technology. Therefore, recent 
research efforts are diverted to reduce the fish meal content to 
prepared fish feed. The conversion of algal and bacterial biomass 
into fish protein can be a good strategy towards aquaculture 
sustainability. In the aquaculture system, the major item of 
expenditure is feed which is about 50% of the total cost involved. 
Cultural animals assimilate only 20- 30% of the feed used in 
aquaculture and the remaining accumulate as waste (Wasave et 
al., 2020a). Several research findings have revealed the 
importance of algae and bacteria as nutritional sources to the 
culture of aquatic organisms. An algal-bacterial complex's 
nutritional profile depends on the C: N ratio of culture medium, 
type of substrate used, and physico-chemical parameters of water 
(Martínez-Córdova et al., 2014). Rice bran has been found as a 
better source of carbon for rearing of GIFT tilapia fry in microbial floc 
system in terms of growth and water requirement for rearing 
(Wasave et al., 2020c, 2020b). Similarly, Shilta et al. (2016) 
reported algal microbial film produced on natural substrates, 
especially on bagasse, enhanced growth of Etroplus suratensis 
and reduced the necessity of water exchange during culture.

The level of crude protein in algal-bacterial floc/film was 
found in the range of 14 to 17 % by Azim et al. (2003), 35 to 41% by 
Garg et al. (2007), 28 to 33% by Ekasari et al. (2010) and 28.7 to 
43.1% by Maicá et al. (2012). The photoautotrophic 
microorganisms-dominated film/floc is characterised by low 
protein and high lipid levels (Gangadhara and Keshavanath, 
2008). On the contrary, high protein and low lipid concentrations 
are characteristic of heterotrophic bacteria-dominated film/floc 
(Emerenciano et al., 2013). Although heterotrophic bacteria-
dominated flocs have lower lipid levels, it is found to be a good 
source of n-3 and n-6 essential fatty acids (Martínez-Córdova et 
al., 2014). Given the nutritional importance of algal-bacterial 
complex, numerous experimentation trials were carried out to 
incorporate microbial mass in aquafeed and replace a fish meal 
for lending hands to sustainable aquaculture (Fig. 3 and 4). These 
studies indicated that microbial supplementation could be 
successfully up to the level of  50 % in trout, 40 % in white leg 
shrimp, 25 % in common carp, and 10 % in tiger prawn. The 
bioactive microbial products or methane utilizing bacterial meal 
can replace fish meal in feed for tiger prawn totally, biofloc meal or 
a single-cell protein obtained from the bacteria Corynebacterium 
ammoniagenes up to 20 %  in white leg shrimp feed and methane 
utilizing bacterial meal up to 55 % in salmon feed. Apart from the 
above ex-situ trials, some in-situ research efforts have revealed 

fish food: 
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Fig. 3: Successful dietary inclusion of microbial supplementation (%) for improved performance of various aquaculture species. 

biofilm-based system showed an increase in protein level and 
decrease in lipid level compared with the traditional fed 
aquaculture system (Yadav et al., 2021).

Improvement in During the last few 
decades, intensification of aquaculture has led to an outbreak of 
various kinds of diseases affecting the economics of the culture 
system. Eventually, farmers were compelled to use antibiotics 

aquatic animal health: 

the economic importance of algal-bacterial systems. The algal-
bacterial film (Periphyton) based culture technique for tilapia was 
economical as it reduced 31 to 40 % feed cost (Garcia et al., 2016; 
Ghosh et al., 2019; Milstein et al., 2008). Similarly, potential feed 
cost-cutting was observed in biofloc technology compared with 
conventional aquaculture systems in tilapia grow-out culture (De 
Schryver et al., 2008; Pérez-Fuentes et al., 2018). The 
comparative proximate composition study of fish reared in a 
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Fig. 4: Replacement of fish meal (%) through microbial supplementation in the feeds for different cultivable species.

and other therapeutics to tackle the infectious condition to 
manage disease prevalence (Henriksson et al., 2018). However, 
it is observed that such a management strategy comprises 
several drawbacks, including ineffective against viral diseases, 
detrimental effects to the environment, antibiotic contamination of 
the product, and advent drug resistance among pathogens 
(Miranda et al., 2018). Vaccination is an excellent tool to bring 
sustainability in global aquaculture but sometimes unable to 
deliver a correct immune response to fish (Ma et al., 2019). 
Moreover, it is quite difficult to develop vaccines for invertebrates 
like shrimp as they lack an adaptive immune system and rely 
entirely on innate immunity (Bachere, 2000).  Therefore, research 
diverted to use other kinds of microbial-originated probiotics or 
immunostimulant substances to modulate the immunity of fish 
and shellfish. Various probiotics and their role in fish and shellfish 
immunity have been extensively studied and have higher utility in 
aquaculture (Nayak, 2010). Similarly, microalgal species such as 
Chaetomorpha aerea, Schizochytrium sp., Chlorella vulgaris, 
etc., are also found to have a positive immune-modulatory effect 
on different cultivable aquaculture species due to the presence of 
bioactive compounds (Charoonnart et al., 2018; Ju et al., 2008; 
Khani et al., 2017; Sattanathan et al., 2020; Sirakov et al., 2015; 
Souza et al., 2020). In some recent studies, it has been found that 
microalgae-bacterial based in-situ or ex-situ culture techniques 
such as biofloc or biofilm develops natural innate immunity of fish 
or crustaceans against different pathogens (Kim et al., 2014; 
Kumar et al., 2015; Pandey et al., 2014; Yu et al., 2020).

The improvement resistance against Aeromonas 
hydrophila in a biofilm-based rearing system was observed in 

common carp fry (Joice et al., 2002) and in Rohu, Labeo rohita 
(Rajesh et al., 2008). Similarly, Vinay et al. (2019) observed an 
elevated level of immunity of Pacific white shrimp, L. vannamei, 
by oral administration of Vibrio harvei biofilm. Among some ex-
vivo studies, Lee et al. (2017) demonstrated that dietary inclusion 
of freeze-dried biofloc powder at the level of 4.0% increases 
innate immunity in Pacific white shrimp. Similarly, Anand et al. 
(2015) found the improved immune response of tiger prawn by 
dietary addition of dried periphyton powder at the rate of 3 to 6% 
level. Microbial consortium, especially Chaetoceros calcitrans, 
Nitzchia sp., Leptolyngbia sp., Skeletonema costatum and the 
yeasts Rhodotorula sp., Saccharomyces sp. and Candida sp. as 
well as filamentous fungi Penicillium sp., Mycelia sterilia were 
found effective against Luminous vibriosis (Lio-Po et al., 2005).  
In another investigation, Crab et al. (2010) found that biofloc 
grown on glycerol protects brine shrimp Artemia franciscana 
larvae against vibriosis. Correspondingly, the disease resistance 
of Pacific white shrimp against Vibrio harveyi was improved by 
including freeze-dried biofloc powder in the diet (Lee et al., 2002). 
In other studies, biofloc added diet resulted in an upregulated 
expression of genes responsible for the enhanced immune 
system in Genetically Improved Farmed Tilapia (Menaga et al., 
2019) and in Rohu (Kheti et al., 2017). Numerous in-situ studies 
on algal-bacterial-based aquaculture systems point out that an 
appropriate C: N ratio is required to improve the immunological 
status of cultured animals and improve water quality (Panigrahi et 
al., 2019; Xu and Pan, 2013). However, Menaga et al. (2019) found 
better animal performance in in-situ algal-bacterial systems than 
ex-situ with improved water quality. The non-pathogenic and 
pathogenic bacteria species were reported in the biofloc system 
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Fig. 5: Proposed modified algal-bacterial system through integration of existing biofilm and biofloc fish culture technique.

with Enterobacter sp., Aeromonas salmonicida, Pseudomonas 
oryzihabitans and Vibrio fluvialis most common ones (Pérez-
Fuentes et al., 2018). Therefore, research efforts are needed to 
study the effect of the presence of pathogenic bacteria in the system 
and adoption of proper inoculum strategy to minimize pathogenic 
microbial load from the culture system or by adding specific carbon 
sources at the required level to promote the growth of beneficial 
microbes and to inhibit the growth of harmful microbes.

Scope for modification of existing algal bacterial 
aquaculture system for sustainability: Conventional biofilm 
culture is performed by the addition of substrate, soil base at the 
bottom of the culture unit and fertilizers to supply nitrogen and 
phosphorus for developing algae (Yadav et al., 2021). Addition of 
substrate in biofilm culture and biofloc system have shown 
improved shrimp growth and health by trapping the suspended 
biofloc particles, better water quality parameters, enhanced 
biofilm growth, and quality of natural food (Kumar et al., 2019). 
Most biofilm type of culture is performed in outdoor conditions 
(Azim et al., 2003) and biofloc in greenhouses, where light 
intensity plays a significant role in biofilm/floc formation. 
Furthermore, higher shrimp production was found in biofloc 
systems exposed to light than without light (Baloi et al., 2013). 
The oxygen demand of the biofloc system may be reduced with 
the integration of algae through the utilization of freely available 
sunlight energy and nutrient inputs in the required ratio.

Interestingly, it was also found that the algal-bacterial 
-1system performs better at low aeration systems (0.2 l air min ) to 

treat domestic wastewater in sequencing batch reactors (Tang et 
al., 2016). While de Morais et al. (2020) found better nitrification 

-1efficiency with a median air flow rate (33.75 l min ) during the 
culture of white shrimp Litopenaeus vannamei in biofloc with a 
biofilm system. These studies revealed the possibility of 
reducing aeration intensity by employing a modified algal-
bacterial system in aquaculture. However, there is limited 
information on optimum nutrient C:N:P ratio for better 
heterotrophic bacterial and algal growth. Further, research is 
needed to carry out standardization of the integrated system 
through species selection and its density, aeration intensity, 
photoperiod and intensity, the addition of substrate and its 
quantity, etc. (Fig. 5). If this kind of integration is found successful, 
it will open a new avenue toward sustainability.  Three wings of 
sustainability in the sense of social – adoptable by society, 
environmental – improving productivity without hampering the 
environment and finally, economical–reducing feed and other 
input costs may be achieved through this integration.

The current review revealed that the algal-bacterial 
integration systems have social, environmental, and economic 
advantages for rearing aquatic animals. Presently, biofloc and 
periphyton-based aquaculture technologies are based on the algal-
bacterial consortia. Biofloc technology mainly focuses on producing 
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Table 1: Deposition of microbial biomass on several types of substrate experimented in various aquaculture systems

Species Culture system Substrate type Microbial biomass on substrate Reference

-2Nile Tilapia Oreochromis Outdoor Plastic baffles AFDM: 0.3 mg cm and 
-2niloticus (about 20 g) concrete tanks Bamboo poles AFDM: 0.4 mg cm Hansen, 1994)

-2stocked @ 3 fish m
7Common carp, Cyprinus Cement Sugarcane Bacterial biomass: 0.02–30.33 ×10 (Ramesh et al., 1999)

−2carpio (2.1 g) and rohu, cisterns bagasse Phytoplankton biomass: 51–276 nos. cm
-2 −2Labeo rohita (1.5 g) @ 1 m Zooplankton biomassa: 40–206 nos. cm

7Paddy straw Bacterial biomass: 0.03–21.00 × 10
−2Phytoplankton biomass: 32–300 nos. cm

−2Zooplankton biomass: 34–165 nos. cm
7Eichhornea Bacterial biomass: 0.10–13.33 × 10

−2Phytoplankton biomass: 72–364 nos. cm
−2Zooplankton biomass: 34–244 nos. cm

7Common carp (Cyprinus Outdoor cement Sugarcane Bacterial biomass: 6.74 X 10 (Umesh et al., 1999)
−2carpio) and rohu (Labeo cisterns bagasse Phytoplankton biomass: 119 nos. cm

-2 −2rohita) (1.5 g) stocked @ 1 m Zooplankton biomass: 104 nos. cm
-2C. catla, L. rohita and C. carpio Pond culture Sugarcane AFDM: 0.05 - 0.07 mg cm  with no feed (Keshavanath

-2(1 to 3.8 gm) stocked @ 0.2 bagasse AFDM: 0.08 to 0.17 mg cm  with feed et al., 2001)
-2-numbers m

-2Genetically improved farmed Cage culture Halved Palstic AFDM: 1.12 mg cm  at the time of (Huchette and
tilapia (GIFT) strain (Oreochromis bottles stocking suddenly dropped to 0.34 Beveridge 2003)

-2niloticus) 27 gm @ 22 mg cm  within one week of stocking
-3numbers per m

Polyculture: Indian Major Carp + Pond (8 X 5 Bamboo stick AFDM per pond: 382.8g (Rai et al., 2008)
Chinese Carp (25 – 30 gm) X 1.5 m) Rice straw AFDM per pond:280.0g

-2Shrimp post larvae with Brackishwater Bamboo Pole Chlorophyll a: 1137.2 to 398.9 μg m (Khatoon et al., 2007)
−2 -2postlarvae (PL 43) @ 30m ponds PVC pipe Chlorophyll a: 929.6 to 138.1 μg m

-2Plastic sheet Chlorophyll a: 684.2 to 217.9 μg m
-2Fibrous scrubber Chlorophyll a: 179.1 to 35.9 μg m

-2Ceramic tile Chlorophyll a: 657.0 to 154.2 μg m
-2M. rosenbergii (5.0 g) @ Pond culture Bamboo poles AFDM: 1.18 – 2.49 0mg cm (Asaduzzaman )

−22 juveniles m
-2Jaraqui (Semaprochilodus Masonry tanks Floating DP: 1.36 - 1.48 mg cm (Tortolero et al., 2016)

insignis) 1.46 g and length macrophyte
-2 -24.15 cm stocked @ 1 m Plastic screen DP: 0.65 - 0.84 mg cm

Jaraqui (Semaprochilodus Mud-bottomed Bamboo,
-2insignis) length 6.5 cm and outdoor tanks (Bambusa vulgaris) DP: 1.12 – 1.43 mg cm (Keshavanath
-2weight 5.83 g stocked @ Ambay (Cecropia DP: 0.95 – 1.22 mg cm et al., 2017)

21 per m pachystachya)
-2Leucaena (Leucaena DP: 0.87 – 0.98 mg cm

leucocephala)

AFDM – Ash free dry matter; and DP – Dry periphyton

(Shrestha Knud-

et al., 2008

heterotrophic microorganisms by adding carbon sources to 
maintain the C: N ratio for augmenting intensive fish production. 
In comparison, periphyton-based extensive technology prefers 
algal production by adding fertilizers to support N: P ratios and 
substrate addition to increase the surface area for biofilm 
formation for moderate fish production intensity. 

The benefits of biofloc and biofilm systems can be 
integrated into a combined approach. For this purpose, further 
research efforts should focus on selection of an appropriate 
cultivable species or their combination, light intensity and energy 

budget, standardization optimum stocking level of each species, 
identification of microalgal and bacterial species that can fulfil 
required food properties for fishes, capacity to control water 
quality, doses of nutrient inputs in the form of fertilizers and carbon 
sources, aeration requirement, substrate addition for 
enhancement of productivity, and finally the economics of culture 
system. Modern aquaculturists are knowledgeable about the role 
of the heterotrophic group of microorganisms in nitrogen removal 
from the culture system. However, a detailed study needs to be 
car r ied out  to  unders tand photoauto t roph ic  and 
chemoautotrophic pathways to remove harmful nitrogen. The 
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appropriate quantity of bacterial and algal biomass can be 
produced at a low cost in a combined aquaculture system to gain 
advantages in water quality improvement, health improvement, 
and food sources. In this way, it can be safely recommended that 
the algal-bacterial consortium can be a better solution for next-
generation sustainable aquaculture. 
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