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In view of the importance of Soil Organic Carbon (SOC) in agricultural management, a study was conducted to develop a digital SOC map using 
remotely sensed spectral indices. The present study was conducted on the Tawdeehiya Farms, located in the central region of Saudi Arabia between Al-
Kharj and Haradh cities.

Landsat-8 (L8) and Sentinel-2 
(S2A) satellite images were used for the 
characterization of SOC stocks in the topsoil layer 
(0-10 cm) of the experimental fields. Soil samples 
were randomly collected from six (50 ha each) 
agricultural fields and analyzed in the laboratory 
for SOC (SOC ) following Walkley and Black A

method. While, vegetation indices (VI), such as the 
Normalized Difference Vegetation Index (NDVI), 
NDVIRedEdge, Enhanced Vegetation Index (EVI), 
Bare Soil Index (BSI), and Reduced Simple Ratio 
(RSR) were computed and subsequently used for 
the development of SOC prediction models.

Univariate linear regression technique 
was employed for the recognition of a suitable 
band/VI for SOC (SOC ) mapping. The SWIR-1 P

2band of both L8 (R  = 0.86) and S2A (R2 = 0.77) 
data was promising for predicting SOC with 16% 
(S2A) and 18% (L8) of BIAS.

2The NDVI and BSI (for L8 data) and BSI and RSR (for S2A data) were found most suitable VI in the prediction of SOC. The R  values of linear 
regression models were 0.68 (BSI) and 0.78 (RSR), indicating that nearly 68% and 78% of the SOC could be predicted through L8 and S2A datasets, 
respectively.
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(Mallick  2020) employed on satellite images such as 
Landsat (Viscarra-Rossel and Bouma, 2016; Kumar et al., 
2016), Sentinel-2 (Wang et al., 2021; Dvorakova et al., 2021), 
etc. Many studies have been conducted to investigate the 
characteristics of soil spectral reflection in regions of moderate 
to high soil fertility levels, but studies in low-fertility soils are still 
limited in the Arab region, such as Saudi Arabia. 

As an example, as part of agroecological exploration of 
the Arabian Peninsula, De Pauw (2002) created a SOC map for 
the entire Arabian Peninsula. At larger scale, Schillaci et al. 
(2016) and Darwish and Fadel (2017) prepared SOC maps for 
the Mediterranean region/Arab region. At the regional scale, 
Tola et al. (2018, 2019) assessed the SOC concentration in the 
parts of Al-Kharj region of Saudi Arabia, with special emphasis 
on the long-term impact of tillage on the soil organic carbon. 
Another study by Mallick et al. (2020) was developed SOC 
prediction models for Asir Province, Saudi Arabia. Most of these 
SOC studies have been focused on areas with vegetation 
growing over the soil surface (forest and cropland), and there 
have been few reports regarding bare cropland topsoil for 
different soil types as well as land uses.

As the prediction accuracy of models depend on local 
conditions, the present study aimed to characterize the soil 
organic carbon (SOC) of low-fertility agricultural fields in the 
parts of Al-Kharj region, Saudi Arabia, using“free-of-cost” 
remotely sensed images, Landsat-8 (L8) and Sentinel-2 (S2A). 
Commonly used linear regression models were employed to link 
the spectral data of topsoil (30 cm). In light of the above, this study 
was conducted with the aim to assess the relationship between 
laboratory estimated SOC (SOC ) and the spectral reflectance data A

scanned by S2A and L8 sensors/satellites; to develop linear 
regression models for the prediction/mapping of SOC concentration 
in agricultural soils: and to map and characterize the soil organic 
carbon of experimental fields for better management.

Materials and Methods

Study Area: The experimental work was carried out in selected 
agricultural fields in Tawdeehiya Farms located 250 km southeast 
of Riyadh, the capital city of Saudi Arabia. The farm is located 
within the coordinates of 24° 11' 00'' N and 48° 56' 14.6'' E (Fig. 1). 

2An area of 1500 m  was allocated on the farm for this study. The 
farm experiences moderate to a hyper-arid climate with hot 
summers (40 ± 2°C) and cold to moderate winters (15 ± 3 °C), 
with a mean air temperature of 35°C and approximately annual 
rainfall of 90 mm, most of which occurred from November to 
February. The soil of the study area was mainly sandy loam with 
mild alkalinity, with a pH of 7.58 and a soil electrical conductivity 

-1(EC) of 2.36 dS m . The observed wilting point, field capacity, and 
saturated hydraulic conductivity values were 7 mm, 14 mm, and 

-13.6 m s , respectively. The terrain of study fields was almost flat 
with slight undulations where the elevation ranged from 329 m to 
453 m. The major crops cultivated on the farm were alfalfa, 
Rhodes grass, corn and carrot.

et al.,Introduction

Reliable data and characterization of soil properties are 
prerequisites for the sustainable management of agricultural 
fields. Of which, soil organic carbon (SOC) content is considered 
as one of the essential indicators of soil nutrients and soil biota 
(Shibu et al., 2006). It also enhances the soil structure and water 
storage capacity of a field (Schoonover and Crim, 2015). In terms 
of environmental quality, the increase in SOC content helps in the 
mitigation of greenhouse gases (Lal, 2004). Thus, quantitative 
measurements and mapping of SOC are essential for agricultural 
management, agro-forestry, and terrestrial sequestration of 
atmospheric carbon (Man et al., 2017). Conventional methods 
used for the estimation of SOC (collection and analysis of soil 
samples) are laborious, time-consuming, and expensive. On the 
other hand, SOC determined by conventional methods may not 
reflect its accurate estimates (Jaber et al., 2012; Shit et al., 2016).

Soil organic carbon varies spatially even within small 
areas (Baruah et al., 2020), hence, it is also practically impossible 
to sample large areas and achieve continuous data coverage. 
Therefore, estimation of SOC concentration in agricultural soils at 
an acceptable level of accuracy is important, especially in the 
case when SOC exhibits strong spatial dependence and its 
measurement is a time and labor-intensive procedure. Hence, there 
is an urgent need to develop rapid and inexpensive soil 
characterization techniques to support many important 
applications, such as precision agriculture. Alternatively, SOC can 
be predicted using spectroscopy and satellite remote sensing 
techniques through the recorded spectral characteristics. To cover 
large areas of spatial datasets for rapid in-situ monitoring of SOC 
and its site-specific management, satellite images were widely used 
(Kooistra et al., 2003; Stevens et al., 2013). Most of the previous 
studies have adopted either a qualitative (Stoner and Baumgardner, 
1981) or a quantitative (Ben-Dor and Banin, 1995) approach.

Advanced remote sensing (RS) and GIS systems provide 
a viable alternative for routine soil analysis, especially for the 
quantitative measurements of SOC. Recent improvements in the 
use of multispectral remote sensing techniques and significant 
progress in the analytical software programs have become 
attractive for SOC mapping by using remotely sensed images 
scanned by various satellites (Landsat, Sentinel, ASTER, etc). It is 
also considered a rapid, non-destructive, and cost-effective 
method for estimating the concentrations of SOC in agricultural 
soils. Moreover, a wide range of soil parameters was 
determined by assessing the spectral reflection from the soils of 
agricultural fields in the visible-near infrared-short wave 
infrared (VIS-NIR-SWIR) regions (Stevens et al., 2013). 

On the other hand, Vegetation indices (BSI, NDVI, EVI, 
etc) have been widely used in the prediction of SOC with the use 
of machine learning methods (Mondal et al., 2017; Bhunia et al., 
2019) such as random forest (RF), partial least squares 
regression (PLSR), support vector machine (SVM), and 
artificial neural network (ANN) and linear regression models 

74 R. Madugundu et al.: Soil organic carbon estimation using satellite images
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approach was used in the identification of a suitable band or index 
for predicting the soil organic carbon (SOC ).P

Modelling and prediction of SOC : To obtain the predicted SOC P

(SOC ) map of the experimental farm, a regression analysis P

based empirical equation was generated with S2A and L8 
datasets against the SOC . During the process, the relationship A

between the spectral reflectance of S2A and L8 datasets and the 
SOC  was assessed using the SPSS (Ver. 20) statistics A

software program (IBM, New York, USA). Of the collected 
samples, 60% was used for the model development and the 
remaining 40% was utilized for model accuracy assessment. 
The best-fit model was tested for its strength by the coefficient 

2of determination (R ), histograms of the residuals, and normal 
probability plots. To generate the SOC  map, the obtained P

empirical model was applied on the targeted spectral index (SI) 
using raster calculator tool of ArcGIS (Ver. 2010). Subsequently, 
the accuracy of the obtained SOC map was evaluated using 
cross- validation/ model performance/ statistical methods by 
comparing the SOC  values to the SOC  values.A P

Leave-one-out validation analysis: Prediction accuracy was 
2evaluated employing the coefficient of determination (R ), root 

mean square error (RMSE), and bias (Bias). The model with the 
2lowest RMSE and highest R  values was considered to be the 

most applicable or ideal model (Jaber et al., 2012).

where, ŷi is the estimate and y  is the observed value.

Results and Discussion

Laboratory analyzed soil organic carbon (SOC ): Collected A

samples were subjected to laboratory analysis for SOC  and the A

results are summarized in Table 3. The SOC  varied from 0.62 to A
-1 -114.71 g C kg  with a mean value of 7.8 g C kg .The studied bare 

soil fields showed a 59% coefficient of variation in the SOC . The A

elevation differed east to west from 364 to 401m. Spatial 
irregularities were assumed to be non-influential and the spatial 
distribution of SOC content was assessed based on the bare soil 
and vegetation condition of the study fields.

i

Soil sampling: A field survey was carried out on 26 March 2017 
and a total of 49 soil samples were collected from the topsoil layer 
(0 to 10 cm). A hand-held GPS receiver (Trimble GeoXH) was 
used to locate the pre-defined sampling points (Fig. 1). The 
random sampling method was adopted and the sample locations 
were selected based on the apparent variation in land use cover, 
topography, and soil texture. Subsequently, the collected soil 
samples were air-dried and subsequently, analyzed in laboratory 
for soil organic carbon (SOC ) content.A

Soil Organic Carbon (SOC) mapping: The flow chart of 
procedures involved in SOC mapping is given in Fig. 2. The 
collected soil samples were analyzed for SOC (SOC ). The A

vegetation indices developed from the satellite images were 
utilized to develop empirical models through regression 
techniques.

Laboratory analysis-SOC: Widely used Walkley-Black (1934) 
titration method was employed for the estimation of the SOC . A

Initially, the collected soil samples were air-dried and sieved (<2 
mm) to remove plant debris and large root matter. Thereafter, the 
SOC  was quantified as given in Eq. 1. A

where, N is the normality of standard ferrous 
ammonium sulphate: B and S are the amount of ferrous 
ammonium sulphate utilized during titration for the blank and 
soil sample, respectively. Subsequently, the obtained SOCA 

-1(%) values were transformed into unit values (g C kg ).

Satellite data and image analysis: A total of four cloud-free 
images of Sentinel-2A (S2A) and Landsat-8 (L8) were 
downloaded from the USGS portal (https://earthexplorer.usgs. 
gov/) corresponding to the field inventory of soil sample collection 
(i.e. 24 March 2017). Details of the acquired S2A and L8 images 
are provided in Table 1. The Q-GIS (Ver. 2.18) software program 
was used to perform image analysis. The acquired L8 and S2A 
images were pre-processed for surface reflectance. 
Determination of reflectance value was achieved using the “semi-
automatic Classification Plugin (SCP)” of the Q-GIS. 
Subsequently, the vegetation indices (VI) were computed using 
the standard equations (Table 2) applied on L8 and S2A spectral 
bands. The obtained SIs were assessed against the lab-
determined SOC (i.e. SOC ). A stepwise linear regression A

100

Wt. of soil
Organic Carbon (%)=N × (B-S)×0.003 ×                               ......(1)

RMSE=                                     (2)

2(ŷ -y )i i

n

∑n
i=1

ŷ -yi i

n

∑n
i=1

Bias=                                       (3)

Table 1: Details of sensors and Acquired Images

Sensor Path/Row/Scene-ID Date of overpass

Sentinel-2A (L1C) T38QRM 24 March 2017
Landsat-8 (L1T) 165/44 29 March 2017
Sentinel-2A (L1C) T38QRM 03 April 2017
Landsat-8 (L1T) 165/45 14 April 2017

used 
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Relationship between SOC  and satellite data: The spectral A

reflectance of bare soil images from S2A and L8 are given in 
Fig. 3.The results showed the variance of spectral reflections 
in the ultraviolet and near-infrared wavelength ranges of the 
topsoil and the dynamics in the electromagnetic spectrum. 
The spectral reflectance (0.16 – 0.44 %) from the L8 bands 
was two folds higher than the S2A reflectance (0.04 – 0.24 %). 
Moreover, there was a fall/decrease in reflectance at the NIR 
band of S2A compared to L8. Similarly, the SWIR-2 band of L8 

showed a decreasing trend compared to S2A. The mean 
values of NDVI, BSI, RSR and EVI of L8 data were 0.08, 0.98, 
0.17, and 0.35, respectively. For S2A data, the mean values of 
NDVI, BSI, RSR and EVI were 0.09, 1.02, 0.47, and 0.67, 
respectively. Individual maps of VIs are illustrated in Fig. 4 
and 5 for L8 and S2A datasets, respectively.

The NDVI of L8 image exhibited low values of 0.05 to 0.13 
as the image was captured at bare soil condition (mean BSI = 

Table 2: Description of Spectral Indices (SIs) used in the study (*Landsat-8; #Sentinel-2A)

Spectral Indices Equations Reference

NDVI* NDVI = (NIR-Red)/(NIR+R) Rouse et al. (1934)
NDVIRedEdge# NDVIRE = (NIR-RedEdge)/(NIR+ RedEdge) Eitel et al. (2011)

Bare soil index Jamalabad and Akbar (2004)

Reduced simple ratio Brown et al. (2000)

Enhanced Vegetation Index Huete et al. (2002)

[(SWIR + Red)-(NIR + Blue)]

[(SWIR + Red)+(NIR + Blue)]
BSI =

SWIR -SWIRmax min

RSR =         1-
NIR

Red (          )SWIR-SWIRmin

EVI = 2.5
NIR-Red

NIR + 6 ∙ Red - 7.5 ∙ Blue + 1

-1Table 3: Descriptive Statistics of SOC  (g C kg ) and the SIs Generated from Landsat-8 and Sentinel-2A datasetsA

Min Max Mean Range Stdev. SE CV (%)

0.62 14.71 7.8 44.1 3.91 0.41 58.7

Table 4: Sensor wise Developed prediction models for SOC (y= SOC ) MappingP

Sensor X factor Model UA (%) PA (%)

Landsat-8 SWIR-1 y = (-10.956*X)+3.074 59.7 66.2
NDVI y = (0.3445*X)+0.2141 32.9 42.6
BSI y = (12.68*X)-0.078 74.2 77.4
RSR y = (0.4861*X)+0.1604 54.9 64.2

Sentinel-2A SWIR-1 y = (-12.636*X)+3.344 54.2 59.7
NDVI y = (2.4058*X)+11.49 78.2 84.1RE

BSI y = (0.4861*X)+0.1604 52.6 48.9
RSR y = (2.4058*X)+78.12 69.8 74.2

Table 5: Performance of the SOC prediction models

      Landsat-8 (L8)    Sentinel 2A (S2A)

2R Adj. R

SWIR-1 0.64 0.59 0.42 0.67 0.62 0.47
BSI 0.72 0.68 0.66 0.62 0.44 0.59
NDVI or NDVI 0.34 0.31 0.59 0.58 0.52 0.61RE

RSR 0.22 0.17 0.62 0.83 0.78 0.55

2 2 2SE of Estimate R Adj. R SE of Estimate
Parameters
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Table 6: Cross Validation of SOC Prediction Model Performance

Landsat-8 Sentinel – 2A

SWIR-1 BSI NDVI SWIR-1 BSI RSR

-1Mean (g C Kg ) 13.42 13.75 13.59 12.72 13.15 12.94
R2 RMSE 0.860 0.792 0.723 0.765 0.863 0.814

-1(g C Kg ) 2.612 2.141 2.761 1.903 2.341 2.122
RMSE (%) 11.21 9.95 10.56 10.11 9.17 11.14
Bias (%) 15.92 16.21 16.06 13.54 11.12 15.33

Parameters

Fig. 1: Location of the experimental field overlaid by the sampled locations.

values of studied indexes were slightly higher than those of the L8 
dataset. Variation between the NDVI of L8 and the NDVI  of S2A RE

was negligible (0.01). The deviation, however, was more in BSI 

0.98) represented by a low intensity of vegetation cover. Also, the 
high values of RSR (0.38 - 1.12) and EVI (0.22 - 0.50) confirmed 
the no-vegetation condition of the field. For the S2A dataset, the 
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Fig. 2: Methodological flowchart - soil organic carbon mapping.

Fig. 3: Spectral reflectance of soil samples: Sentinel-2 (a) and Landsat-8 (b).
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(0.04), followed by RSR (0.30) and EVI (0.32). The regression 
(linear) analysis between the SOC  and the vegetation indices A

(VI) was performed and the generated empirical models are 
presented in Table 4. The user’s accuracy (UA) and the 
producer’s accuracy (PA) of the prediction layers were assessed. 
The SWIR-1 band was found better in predicting the SOC for both 
the L8 and S2A datasets. In the case of vegetation indices, the 
BSI and the NDVI performed well with L8 data, while the NDVI  RE

and the RSR did the same with S2A data (Table 4).

SOC prediction models – performance: The performance of 
the generated SOC  models was statistically assessed (Table P

5). Out of four VI studied, two VI from each of the L8 and S2A 
datasets showed significant correlation between the SIs and 

2the SOC , with R  values ranging between 0.38 and 0.78. For A

the L8 dataset, the BSI and the NDVI were found more suitable 
for predicting SOC. However, for S2A dataset, the BSI and RSR 
were identified most sensitive VI for predicting SOC. The NDVI 
and BSI of L8 were found more accurate (P< 0.0001) for 

predicting the SOC. However, in the case of S2A, the BSI and 
RSR showed a statistically significant relationship with the 
observed SOC (P< 0.0001), as given in Table 5. Conversely, 
high BSI values were associated with bare soil fields or dried 
vegetation with low NDVI values. The spatial distribution of 
SOC observed in the experimental farm was determined with 
low to medium SOC  values. Details of the model performance P

2analysis are presented in Table 5. The R  values of linear 
regression models were 0.68 (BSI) and 0.78 (RSR), indicating 
that nearly 68% and 78% of the SOC could be predicted through 
L8 and S2A datasets, respectively, through BSI.

The correlation between the predicted and the observed 
SOC values revealed that the S2A dataset exhibited the best 
correlation with BSI (R2=0.863, P<0.0001) compared to those 
exhibited by the L8 dataset (R2 = 0.792, P<0.001). The model 
accuracy of 64% (L8) and 72% (S2A) were achieved in the 
prediction of SOC. RMSE (%) of predictive model from SWIR 
band was between 11.21 (L8) and 10.21 (S2A), while BSI 

Fig. 4: Vegetation indices generated from Landsat-8 data.
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exhibited RMSE values of 9.95% and 9.17% for L8 and S2A, 
respectively (Table 6). Performance analysis of SOC  and A

SOC  obtained using VI (Fig. 6 and Fig. 7) showed the P

goodness of fit, and the test results revealed no significant 
difference between the observed and the predicted SOC at 0.05 
significance level. The results also indicated an increase in the 
SOC with the increase in NDVI and a decrease in BSI. The 

-1maximum recorded value of digital SOC map was 28 g C kg  
-1and 29.6 g C kg  for L8 and S2A datasets, respectively. While 

-1negligible SOC values (~0.7 – 1.5 g C kg ) were recorded in the 
farm areas covered by non-agricultural activities (sand area 
and discontinued pivots) showed negligible SOC values.

Moreover, this study investigated medium (30-m and 10-
m) resolution satellite images with varying bandwidths. Most of 
the earlier studies (Shit et al., 2016; Bhunia  2016), 
succeeded by integrating field observations to measure digital 
soil maps. The spectral reflectance of a certain field can vary with 
the nature of soil characteristics, such as colour, nutrient holding 

et al.,

capacity, and fertilizer assimilation, turn-over of nutrients, etc. 
(Ismail and Yacoub, 2012). For example, in this study, the NDVI 
was found to be one of the most important features explaining the 
SOC variability as reported by Wang et al. (2018) and Nabiollahi 
et al. (2018). It is because of the dependency of SOC on 
vegetation cover, NDVI has frequently been used as a predictor 
for mapping SOC. Direct correlation between spectral indices and 
SOC is of great importance in predicting SOC, which plays a vital 
role in controlling many vital soil properties. Hence, this aimed to 
explore the ability of spectral bands and vegetation indices in 

2predicting SOC. The S2A data (R  = 0.68, RMSE = 0.26%) 
showed significantly better results in terms of SOC prediction 

2than L8 (R  = 0.65, RMSE = 0.28%). These results are consistent 
with the studies of Castaldi et al. (2019) and Rosero-Vlasova et al. 
(2017). Moreover, the generated SOC maps were validated using 
similar reference field observations (Leave-one-out). Which 
corroborate with the studies of (Kumar et al. (2016); Mondal et al. 
(2017) and Bhunia et al. (2016, 2019). The model performance 
indicators (RMSE and BIAS) also confirmed a significant 

Fig. 5: Vegetation indices generated from Sentinel-2 data.
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relationship between VIs and SOC. In this study, linear 
relationships between the SWIR-1 band, VI from the L8 and S2A 
satellite data were observed against the SOC  and were A

confirmed with a similar study by Wang et al. (2021). The analysis 
of S2A data showed that the two SWIR broad bands centered at 
1610 and 2190 nm are sufficient to satisfactorily predict SOC 
content, as a result, high values of BSI and low RSR areas were 
associated with low SOC areas, and vice versa. The potential of 

2SOC prediction models generated in this study varied with the R  
values of 0.86 and 0.77 for L8 and S2A datasets.

In the case of L8 data, the SOC prediction model 
2generated in this study was performed well compared to R  

values (0.65 to 0.78) as earlier reported by Bouasria et al. 
(2020), Mohamed et al. (2020), and Mallick et al. (2020). 
Whereas, the models developed from S2A showed better 

2 2performance (R  = 0.77) than the reported values (R  =0.25) of 

2Zhou et al. (2021) and (R  =0.54) by Dvorakova et al. (2021) but 
2not as superior (R  = 0.85) to the study of Wang et al. (2021). In 

some fields that were classified as ‘bare soil’ (NDVI < 0.25) and 
consequently, the lowering of spectral reflectance in the red and 
red edge bands was probably due to the influence of crop 
residues on these wavelengths highly sensitive to vegetation. In 
addition, the presence of crop residues consistent presence of 
green or dry vegetation (> 20%) can strongly affect the spectral 
reflectance (Bartholomeus et al., 2011), and consequently, 
influence the prediction accuracy of soil properties. Although, 
L8 and S2A imagery has been able to separate pure soils from 
soils with crop residues by using spectral unmixing techniques, 
which was not attempted in this study. 

Limitations of the study: Even so, some studies on soil property 
monitoring using S2A as a single data source have overcome 
many problems and has achieved certain results (Wang et al., 

Fig. 6: Scatter plot between SOC  and SOC  obtained from spectral indices of Landsat-8; (A): SOC  predicted using SWIR-1 band and (B) SOC  A P P P

predicted using BSI.
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2021), and the verification results are consistent with the 
conclusions of this study, i.e., S2A can monitor soil properties, and 
it is expected to develop the potential for retrieving soil properties. 
It should be noted that there are still some limitations in the 
present study. First, space-borne data are controlled by the data 
acquisition condition, which mainly associates with atmospheric 
attenuation and plant litter, and the acquisition time must be as 
close as possible to the sampling time. Second, the effect of soil 
moisture and soil texture on SOC prediction was not considered 
in this study, as they were assumed to be relatively 
homogeneous. Third, the simultaneous existence of large bare 
tilled agricultural fields and high-quality remote sensing images 
is an important prerequisite for replicability. In future, the 
continuous research of machine learning and deep learning will 
promote further development of remote sensing inversion 
technology. Remote sensing is a very helpful technique for 
evaluating macronutrients, such as SOC. The current study 

was based on the modeling of relationship between the spectral 
response and the concentrations of laboratory-estimated soil 
organic carbon (SOC ). In detail, the linear regression models A

were applied to the reflectance spectra scanned by S2A and L8 
images on the top soil of agricultural fields in the Al-Kharj region 
for the prediction of SOC. In summary, results from our 
investigations pointed out that the red and near-infrared regions 
are the most sensitive portions of the spectrum to SOC. 

More specifically, the SWIR-1 band was found to be the 
2most acceptable band for the prediction of SOC for both L8 (R  = 

20.86) and S2A (R  = 0.77) satellites with BIAS of 16% and 14%, 
2respectively. In case of vegetation indices, the BSI (R  = 0.79) and 

2 2 2NDVI (R  = 0.72) for L8 images and BSI (R  = 0.86) and RSR (R  = 
0.81) for S2A images were found to be good SOC predictors with 
a bias ranging between 11% and 16%. Moreover, the variation in 
the spectral bandwidth of L8 and S2A played an important role in 

Fig. 7: Scatter plot between SOC  and SOC  obtained from spectral indices of Sentinel-2A; (A): SOC  predicted using BSI, and (B) SOC  predicted A P P P

using SWIR-1 band.



O
n
l
i
n
e
 
C
o
p
y

¨ Journal of  Environmental Biology, January 2022¨

the selection of spectral indices. In particular, S2A bands 
produced an overall accuracy of 81% compared to 74% 
produced by L8 bands. Overall, the results of this study 
supported the hypothesis that L8 and S2A datasets could be 
beneficial for continuous monitoring of SOC. However, the 
derived empirical equations/models for the prediction of SOC 
were sensor-dependent. In other words, a regression 
developed for one sensor may not be applicable, at least 
without further study, to another instrument.
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