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This study was designed to assess the antibiofilm activity of quercetin on characterized S. aureus isolates.

This study evaluated 36 S. aureus isolates, each of which was 
identified using Gram staining, culture, biochemical, and PCR assays. Isolates were 
cultured and their biofilm production was evaluated using Congo red agar (CRA) 
plates, microtiter plate tests and PCR, and the effects of quercetin were examined.

The CRA results revealed that eight (22.3%) S. aureus isolates were 
strongly positive for biofilm production and an additional 18 isolates (50%) showed 
moderate biofilm capacity. The remaining 10 isolates were negative (27.7%) for 
biofilm production. S. aureus isolates were divided into strong positive, intermediate, 
and negative groups, 27.8%, 44.5%, and 27.7%, respectively. Scanning electron 
microscopy showed that the biofilm-producing isolates appeared as aggregates of 
cells within a heavy matrix. In addition, PCR assay identified IcaA and IcaD (66.6% 
for both) biofilm production genes in most isolates and IcaC (61.1%), IcaB, FnbB 
(33.3% for both), and Fib (22.2%) in several other strains. Quercetin significantly 
inhibited biofilm activity in biofilm producing S. aureus isolates in a dose-dependent 
manner, with an inhibition rate of 29.6-87.7%.

Biofilm production is dependent on Ica gene phenotype and strains 
with an IcaABCD or IcaABD phenotype produce more biofilm than strains with 
IcaAD phenotype. Quercetin significantly inhibited S. aureus biofilm production, irrespective of Ica phenotype.
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recognize glycoproteins found in the extracellular matrix and 
plasma of patients. Diversity of these adhesion molecules can be 
attributed to the ability of S. aureus to adapt to a wide range of 
growth environments, including connective tissues, bone, blood 
stream and vascular tissues. These surface-uncovered proteins 
are recognized and communicated within S. aureus communities 
via microbial surface components recognizing adhesive matrix 
molecules (MSCRAMMs), which are capable of initial attachment 
to native tissues and medical devices (Christensen et al., 1985).

Inhibition of these biofilms has obvious clinical benefits, 
highlighting the need to develop novel therapeutics targeting 
these structures. Given this, it is not surprising that this remains a 
focus of research for many international groups and has given 
rise to a wide variety of anti-biofilm compounds with unique 
structures, including herbal compounds, chelating agents, 
antibiotics, antimicrobial peptides and synthetic chemicals 
(Sadekuzzaman et al., 2015). Quercetin is a plant-derived 
flavonol present in several food products, including capers, 
onions, peppers, cranberries, tomatoes, apples, and grapes 
(Nabavi and Silva, 2018). Quercetin has a documented 
antibiofilm effect against several Gram-positive and Gram-
negative bacterias (Earl et al., 2008). Quercetin affect anti-biofilm 
activities by decreasing the total protein and viable cells within the 
biofilm (Zeng et al., 2019). Thus, the present study examined and 
summarized the phenotypic and genotypic isolation and 
characterization of S. aureus biofilms. Moreover, the possible 
treatment of biofilms formed by these isolates was also checked.

Materials and Methods

Isolation of clinical samples: S. aureus was isolated from 
infected patients. A total of 36 samples were collected from King 
Faisal Hospital, Taif, Saudi Arabia. These samples were isolated 
from wound swabs (28/36), blood (4/36), sputum (2/36) and 
catheter (2/36) and collected between September 2019 and 
February 2020. 

Identification of isolates: All isolates were initially identified using 
conventional bacterial identification tests such as Gram stain, 
catalase, coagulase and mannitol salt agar specific for S. aureus 
(Kot et al., 2018). Isolates were stored at -20°C for further study.

Congo Red Agar method (CRA): Bacterial isolates were 
cultured following the method of (Freeman et al., 1989) with minor 
modifications. The medium consisted of brain heart infusion broth 
(BHI) supplemented with 1% glucose. Congo red was set up as 
an independent aqueous solution and autoclaved before it was 
added to agar plates, inoculated and incubated at 37°C for 24 hr. 
Strong biofilm producers showed intense black colonies with dry 
crystalline consistency, while intermediate producers created 
colonies with darkened center or black colonies without a dry 
crystalline consistency. Pink colonies indicated weak slime CRA.

Microtiter plate assays: Adherence assays on microtiter plates 
were used as the in-vitro measure of biofilm activity as described 

Introduction

Staphylococcus spp. are common skin microbes known 
to inhabit the human skin, sweat glands, and mucous 
membranes, especially in the nasal cavity of healthy individuals 
(Costa et al., 2011; Plata et al., 2009). S. aureus is also present as 
a commensal in several other niches inside human body and can 
act as an opportunistic pathogen with its aberrant growth linked to 
infection of skin and soft tissues. These infections can even lead 
to more severe diseases such asosteomyelitis, endocarditis, 
pneumonia, septicemia and toxic shock (Lowy, 1998; Peacock 
and Paterson, 2015; Rao et al., 2015). Moreover, S. aureus has 
been implicated in food poisoning and scalded skin syndrome 
(Haasnoot and De Vries, 2018; Vitale et al., 2015). Several 
environmental bacteria have also been implicated in both severe 
acute and chronic infections in humans, with the severity and 
complexity of these diseases largely dependent on their ability to 
produce multilayered cellular matrices, known as biofilms 
(Tsuneda et al., 2003). Biofilms are layers of bacteria within a 
glycocalyx composed of polysaccharides, DNA and proteins. 
These films are also implicated in increasing resistance to 
antibiotics and immune defenses (Chung and Toh, 2014).

Phenotypic identification of biofilm-producing S. aureus 
strains can be completed using Congo red agar, microtiter plate 
assay and tube methods. Recently, polymerase chain reaction 
has also been used to assay for bacterial surface components, 
which may encode adhesive matrix molecules (MSCRAMMs) 
and Ica operon (Gerke et al., 1998). Biofilm production is 
dependent on two properties: adherence of bacterial cells to the 
surface facilitating the production of multi-layered cell clusters 
(Ghasemian et al., 2015) and biosynthesis of polysaccharide 
intercellular adhesion (PIA) compounds (Ikonomidis et al, 2009). 
These intercellular adhesion (Ica) molecules are produced from 
four open reading frames (ORFs), IcaA, IcaB IcaC, and IcaD 
(Cucarella et al., 2002), which encode the proteins needed to 
synthesize the adhesion molecules and are followed by the IcaR 
gene which acts as  irregulator (Arciola et al., 2001). IcaR protein 
negatively regulates the expression of IcaADBC by binding to the 
promoter and restricting transcription (Parsek and Fuqua, 2004). 
This repression can be released by various other regulatory 
factors including SarA and stress-induced sigma factor SigB 
which act in a positive feedback loop to increase biofilm synthesis 
(Beenken et al., 2003; Jefferson et al., 2003).

Autoinducer 2 (AI-2) is also known to control this system 
and has been previously described as a universal language for 
interspecies communication, especially in S. aureus. AI-2 
precursor molecule regulates rbf transcription and decreases 
PIA-dependent biofilm production in S. aureus (Ma et al., 2017). 
Ica operons were first reported in S. epidermidis (Heinrichs et al., 
1996) and then in S. aureus (Cramton et al., 1999). S. aureus 
attaches to various surface materials, including host tissues and 
surgical devices, which is mediated by its ability to produce a 
variety of adhesion molecules in addition to those produced by 
the Ica operons (Beenken et al., 2004). Most adhesion molecules 
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Quercetin antibiofilm activity: To assess the efficiency of 
quercetin mediated biofilm inhibition, strains were treated with 

-1various doses of quercetin, 50, 25, 12.5, and 6.25 mg ml  in 
DMSO. Quercetin was purchased from Sigma-Aldrich (St. Louis, 
MO, USA) and biofilm inhibition was assayed as follows. Mature 
biofilms were established by inoculating wells with heavy 

8 -1bacterial suspension (1×10  CFU ml ) prepared in TSB/0.5% 
glucose, and then aerobically incubated with shaking at 37°C for 
48 hrs. The media were discarded, and the wells were washed 
with sterile PBS (pH 7.2). These biofilms were then treated with 
various concentrations of quercetin under aerobic conditions at 
37°C for 24 hrs and then stained and quantified as described 
above. All tests were performed in triplicate for three different 
experiments.

Statistical analysis: Data obtained from the study were 
expressed as mean ± S.E. for all 36 S. aureus isolates. Data were 
analyzed using analysis of variance (ANOVA) with Bonferroni test 
in SPSS software version 11.5, for Windows (SPSS, IBM, 
Chicago, IL, USA) and statistical significance was set at P< 0.05.

Results and Discussion

CRA assay (Table 2) revealed that eight (22.3%) 
isolates showing intense black color were strongly positive for 
the production of biofilms, while 18 other isolates (50%) were 
intermediate producers and the remaining 10 isolates (27.7%) 
were negative for biofilm production (Fig.1). In addition, these 
results showed that isolates from sputum tended to be the 
strongest biofilm producers (100%), with blood (25%) and 
wound swab isolates (17.8%) demonstrating a much smaller 
capacity for biofilm production. In contrast, none of the catheter 
isolates were biofilm producers (100%). Quantitative MPT was 
then conducted based on the CRA test results. After reading the 
absorbance at 492 nm, the strains were classified as strong, 
moderate and weak biofilm producers. 

The results of all 36 human clinical S. aureus isolates 
were identified as 10 (27.7%) strong biofilm producers, 16 
(44.4%) intermediate producer strains and 10 (27.7%, Table 2) 
non-producer strains. S. aureus, which is commonly found in the 
nasal cavity of healthy individuals (30%), is both a genetic carrier 
for and producer of biofilms (Kluytmans and Wertheim, 2005). S. 
aureus biofilm production is enhanced by increasing glucose 
concentrations up to 0.5% in TSB media (O'Neill et al., 2007). 
Biofilm-producing isolates were detected using CRA containing 
0.5% glucose and this assay is the most reproducible, fastest and 
easiest initial indicator of biofilm production currently available, 
relying on a simple color based determination of activity (Arciola 
et al., 2002). The results of CRA test identified more positive 
isolates than MTP assay which is consistent with the previous 
data (Gowrishankar et al., 2016b). Of all the S. aureus strains 
examined, eight showed a clear strong positive phenotype 
(22.2%) for biofilm production and these results are similar to the 
previous reports where 88.9% of S. aureus isolates analyzed 
produced some form of biofilm (Ammendolia et al., 1999). It is well 

by (Cafiso et al., 2007) with minor modification. Briefly, S. aureus 
isolates (36 strains) were inoculated in TSB media supplemented 
with 0.5% glucose and incubated at 37°C for 18 hr. After that, a 

8 -1cell suspension containing 10  CFU ml  was prepared by 
transferring the incubated culture to new tryptic soy broth with 
0.5% glucose. A 200 µl of this cell suspension was then loaded 
onto a 96 well microtiter plate in triplicate and incubated for 48 hr 
at 37°C to evaluate biofilm productions. The plates were then 
washed twice with sterile phosphate-buffered saline (PBS) and 
fixed in 250 µl of methanol for 15 min. The plates were then 
removed and stained with crystal violet (1%, 200 µl) for 5min, 
rinsed with running tap water and then air-dried. The colorant was 
dissolved in 95% ethanol to measure absorbance at 492 nm and 

any values of ≥ 0.12, were considered positive for biofilm 

production. Any samples producing values of <0.2 were regarded 
as weak biofilm producers, 0.2-0.4 as moderate producers and 
>0.4 as strong producers, respectively.

Scanning electron microscope study of produced biofilm: 
Biofilms were visualized using SEM following incubation on glass 
slides (1 cm × 1 cm). Plates were incubated at 37°C for 48 hr and 
then, the glass slides were washed twice with PBS (PH7.4) and 
fixed at 4°C for 2 hr in 3% glutaraldehyde. The samples were 
dehydrated in an ethanol gradient (30%, 50%, 70%, 90%, and 
100%, 10 min each) and then dried and sputter-coated with gold 
before being examined under a high-resolution scanning 
microscope (Priester et al., 2007). These biofilms were 
photographed under SEMatthe Electron Microscope Unit of Taif 
University (model JEOLJSM-6390 LA serial number 
PM14400099).

DNA extraction of S. aureus strains: S. aureus colonies were 
purified and cultivated in 1 ml of tryptic soy broth for 24 hr at 37 °C. 
DNA was then extracted from 50-100 bacterial colonies 
suspended in 400 µl DEPC water and boiled for 10 min at 100 °C. 
The tubes were then centrifuged at 14000 rpm for 7 min and a 
clear supernatant was used for PCR amplification after 
measuring the concentration of DNA on a BIO-RAD 
spectrophotometer. 

PCR amplification: Specific primers were used to facilitate 
species specific identification of the Ica genes (Table 1). These 
primers were designed using a TaqMan primer designer program 
and the primers were purchased from Macrogen (GAsa-dong, 
Geumcheon-gu. Korea). PCR was performed in a final volume of 
25µl and consisted of 5 µl DNA template, 1 µl of 10 pM forward 
and reverse primers, and 12.5 µl master mix, and the volume was 
adjusted with sterilized deionized water. PCR was then 
performed using the following cycle conditions: 94°C for 5 min, 
followed by 35 cycles of denaturation at 94°C for 60 sec, 
annealing as described in Table 1, and extension at 72°C for 60 
sec, with a final extension for 7 min at 72°C.  16S rRNA gene was 
used as an amplification control and PCR products were 
visualized using a 2% agarose gel stained with ethidium bromide 
in Tris-Borate-EDTA (TBE) buffe rand UV light and photographed 
using a gel documentation system (SynGen, USA).
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established that the microtiter plate test is a more quantitative and 
accurate test for biofilm detection in S. aureus with high 
accuracy, specificity and positive predictive values (Mathur et 
al., 2006). The microtiter plate test results of 36 S. aureus isolates 
identified in this study revealed 26 isolates as biofilm producers, 
10 of which were strong producers (27.7%), 16 were intermediate 
(44.4%), and 10 produced nobiofilms, which is in agreement with 
the results of CRA assay. SEM was used to visualize these 
biofilms on glass slides and the presence of heavy clump biofilms, 
composed of aggregates of bacterial cells embedded in a matrix, 
confirmed strong biofilm producer label applied to several S. 
aureus isolates of this study (arrowheads in Fig. 2B). 

The negative biofilm producers appeared round with the 
characteristic grape shape without a matrix (Fig. 2). The SEM 
results also confirmed S. aureus aggregation in response to 
biofilm production confirming our earlier assays. Biofilm 
production is dependent on the expression of polysaccharide 
intercellular adhesion (PIA) compounds (Mack et al., 1996) and 
previous reports have linked the presence of IcaADBC genes with 
PIA production and the occurrence of biofilms as genes in this 
operon mediate intercellular adherence and production of 
multilayer biofilms (Lappin-Scott and Bass, 2001). Given this 
data, further study was conducted to determine the prevalence of 

Table1: Sequence details of PCR primers used to detectthe Ica genes in the PCR assays

Target Gene Annealing conditions Amplicon size Strand Sequence(5'-3')

IcaA 50°C, 45 sec 188 bp Sense CAACCTCAACTAACGAAAGGTAG
Antisense GTCTAAGAAGTTTGCTGTTATG

IcaB 48°C, 45 sec 561 bp Sense GTGTTAGTCAATCACAATTTGAATC
Antisense CATTGGAGTTCGGAGTGACTG

IcaC 50°C, 45 sec 209bp Sense GTCACAGTTACTGACAACCTTG
Antisense CAATGAGTCTAGAATGATTGGATG

IcaD 50°C, 45 sec 501 bp Sense GTTGGTATCCGACAGTATACTG
Antisense CGTGAATCGTCATCTGCATTTG

fib 55°C, 60 sec 404 bp Sense CTACAACTACAATTGCCGTCAACAG
Antisense GCTCTTGTAAGACCATTTTCTTCAC

FnbB 55°C, 60 sec 524 bp Sense GTAACAGCTAATGGTCGAATTGATACT
Antisense CAAGTTCGATAGGAGTACTATGTTC

16S rRNA 50°C, 45 sec 180 bp Sense GTTGGGCAGTCTAAGTTGACT
Antisense CTTCATGTAGTCGAGTTGCAG

Table 2: Distribution of Ica genes in biofilm producing isolates identified using Congo red agar (CRT) and Microtitre plate test (MPT) assays

Isolate origin No. of SPI N CRA SPIN MPT
samples

Wound swab 28 5/28 15/28 8 6/28 14/28 8/28
Catheter 2 - - 2 - - 2
Blood 4 1/4 3/4 - 2/4 2/4 -
Sputum 2 2 - - 2/2 - -
Total samples 36 22.2% 50% 27.7% 27.7% 44.4% 27.7%

Values represent experiments completed in triplicate. SP: strong positive; I: intermediate; N: negative; CRA: Congo red agar and MPT: microtitre plate 
test.

Fig. 1: Congo red agar based detection of S. aureus biofilm producers: (A) 
Black colonies with dry crystalline consistency (strong positive); (B) Dark 
colonies without the dry crystalline phenotype and blackening of centers 
(intermediate producers) and (C) Smooth pink colonies (none producers).

B
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consistent with the results of Gowrishankar et al. (2016a). It is 
worth noting that all of the strong biofilm-producing strains 
harbored both IcaADBC and IcaADB. IcaD was also present in 
both the intermediate and weak biofilm-producing isolates. Our 
data is in agreement with other studies that have shown that all 
strong biofilm-producing S. aureus isolates contain IcaABCD and 
IcaABD, while IcaAD is more common in weak to moderate 
producers (Piechota et al., 2018). The IcaA protein plays a crucial 
role in the synthesis of PIA, while IcaD does not possess any 
exclusive transferase activity (Gupta et al., 2017). 

Current data suggests that the expression of IcaA is 
associated with massive biofilm production. Distribution of IcaA 
among the present isolates studied was 66.6% and was 

Fig. 2: SEM micrographs showing: (A) biofilm negative S. aureus isolates (Grape-like cells without matrix) and (B) biofilm producing S. aureus isolates 
(Cell aggregates embedded in a matrix).

Fig. 3: (A) Percentage of samples positive for IcaABCD operon genes: IcaA and IcaD: 66%, IcaC, 61.1%, IcaB and fnbB, 33.3% and fib, 22.2%; (B) 
Distribution of IcaABCD positive samples. All data are expressed as mean from three different experiments.

Ica operon in these isolates using PCR against the IcaA (188 bp), 
IcaB (561 bp), IcaC (209 bp), IcaD (501 bp), FibA (404bp) and 
FnbB (524bp) genes using 16S rRNA gene as a control (180 bp). 
Analysis of 36 isolates revealed that IcaA and IcaD were present 
in 24 isolates (66.6%), and their distribution was abundant in 
samples isolated from sputum, blood and wound swabs (Fig. 3A-
B; Fig. 4). The IcaC gene was detected in 22 isolates (61.1%) 
distributed evenly between the sputum, blood, and wound swabs 
(Fig. 4), while IcaB and FnbB were detected in 12 (33.3%) 
samples of sputum and wound swabs (Fig. 4, 5A). 

Finally, the fib gene was only detected in 8 isolates 
(22.2%) (Fig. 5 B). PCR data also revealed that five out of 36 
isolates did not harbor any IcaADBC operons (13.8%), which was 
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Fig. 4: Amplification of Ica A, B, C and D genes from S. aureus isolates using species specific PCR. Upper panel describes the visualization of these 
results; lane 1: 100 bp DNA ladder and lanes 2-13 are identified S. aureus isolates. Lower panel shows amplification of 16S rRNA gene in these sample 
samples.

Fig. 5: Amplification of FnbB and fib genes in S. aureus isolates using species specific PCR. Upper panel shows target gene amplification in the S. aureus 
isolates;  lane 1 is 100 bp DNA ladder and lanes 2-13 are S. aureus isolates. Lower panel shows 16S rRNA amplification in these samples.



O
n
l
i
n
e
 
C
o
p
y

¨ Journal of  Environmental Biology, May 2021¨

E.H. Eldrehmy et al.: Anti-biofilm activity of quercetin against S. aureus isolates 621

may be correlated to variation of bacterial strains in different 
geographical regions. Grouping of biofilm-producing S. aureus 
was demonstrated by others who grouped S. aureus isolates into 
three clusters based on their potential biofilm production creating 
a blood isolates, colonizing intravenous devices, and commensal 
isolates from the skin or nose categories (Agarwal and Jain, 
2013). Our findings clarify that the strongest biofilm-producing 
strains were isolated from sputum, blood and wound swabs, with 
prevalence rates of 100%, 50%, and 21%, respectively, which 
may be due to difficulty of host respiratory environment, which 
causes the bacteria to produce intensive biofilm to resist these 
adverse conditions. Moreover, blood isolates need to invade 
blood vessels which may be aided by the secretion of adhesion 
genes and increased biofilm production. Quercetin had good 
bacteriostatic effect on S. aureus and E. coli (Wang et al., 2021). 
Incubating these biofilms with different concentrations of 
quercetin resulted in significant inhibition of their biofilm 
production in a dose-dependent manner (Fig. 6).

Recently, several flavonoids, including quercetin have 
been identified as strong contenders for the production of antibiofilm 
agents (Matilla-Cuenca et al., 2020; Memariani et al., 2019). 
Quercetin was able to eradicate pre-prepared S. aureus biofilms at 

-150 mg ml , which completely inhibited biofilm production (87.7%) in 
a dose-dependent manner. A contemporary study demonstrated 
the inhibitory effect of quercetin on both clinical and reference 

-1isolates of S. aureus (250-500µg ml ) (da Costa Júnior et al., 2018) 
and another study reported that quercetin crippled biofilm 
production in S. aureus isolates when applied at various 

-1concentrations (1-50 mg ml ) (Kim et al., 2018) which is consistent 
with our findings. Comparable results show that quercetin also 
demonstrated reliable antibiofilm activity against S. mutans, which 
may be used for treating dental caries (Zeng et al., 2019).

expressed in all of our strong biofilm-producing strains. Other 
previous studies (de Silva et al., 2002; Ninin et al., 2006) 
described the relationship between the presence of IcaAD operon 
and massive biofilm production, while others did not find this 
association, which is consistent with our findings. Another study 
reported that the prevalence of IcaA and IcaD was 66% and 58.4%, 
in S. aureus isolates (Kroning et al., 2016), which was also 
consistent with our results. IcaB possess deacetylase, which 
deacetylates poly-N-acetylglucosamine. Deacetylation is critical 
for biofilm formation and has been linked to biofilm development 
in MRSA MSSA. MRSA MSSA biofilm production has also been 
shown to be IcaADBC dependent and responsive to specific 
environmental signals (Pokrovskaya et al., 2013). Furthermore, 
the absence of IcaB leads to a defect in the synthesis of poly-N-
acetyl glucosamine and less efficient binding to bacterial cell 
surface decreasing biofilm production (Vuong et al., 2004).

IcaC is an integral membrane protein that may convey N-
acetylglucosamine oligomers across the bacterial cell 
membrane. IcaB deacetylates PIA activity (Gotz, 2002). This 
study demonstrated 61.1% prevalence of IcaC. Conversely, clfA 
and FnbB (A and B) adhesions are important in host cell binding 
and encode MSCRAMMs, required for adhesion to abiotic 
surfaces. Hypothetically, fibronectin-binding proteins (FnbA and 
FnbB) act to facilitate invasion by modulating the adhesion and 
internalization of bacterial cells into the host tissues. In addition, it 
is well established that fibronectin proteins facilitate primary 
adherence and intercellular accumulation in biofilms increasing 
colony aggregation (Heilmann, 2011). However, it was found that 
only 33.3% and 22.2% of the test isolates were positive for the 
FnbB and fib genes, respectively (Table 2). Interestingly, the 
prevalence of FnbB and fib were 17.9% and 71.8% in their 
isolates (Patel et al., 2009), however, variation in these results 
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