Induction of genetic variability for quantitative traits in horsegram (Macrotyloma uniflorum) through irradiation mutagenesis

S. Priyanka ${ }^{1}$, R. Sudhagar ${ }^{2 *}$, C. Vanniarajan ${ }^{3}$, K. Ganesamurthy ${ }^{1}$ and J. Souframanien ${ }^{4}$
${ }^{1}$ Centre for Plant Breeding and Genetics, Tamil NaduAgricultural University, Coimbatore-641 003, India
${ }^{2}$ Sugarcane Research Station, Melalathur, Tamil Nadu Agricultural University, Vellore-635 806, India
${ }^{3}$ Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Madurai-625 104, India
${ }^{4}$ NuclearAgriculture and Biotechnology Division, BARC, Mumbai - 400085 , India

*Corresponding Author Email : sudhagar.r@tnau.ac.in

Received: 23.04.2020

How to cite : Priyanka, S., R. Sudhagar, C. Vanniarajan, K. Ganesamurthy and J. Souframanien: Induction of genetic variability for quantitative traits in horsegram (Macrotyloma uniflorum) through irradiation mutagenesis. J. Environ. Biol., 42, 597-608 (2021).

Introduction

Horsegram (Macrotyloma uniflorum (Lam) Verdc.) is an autogamous crop under leguminous family with maturity duration of $120-180$ days (Morris, 2008). It is well adapted to low rainfall areas with average temperature ranging from 18° to $27^{\circ} \mathrm{C}$. The seeds are highly nutritious with $16.9-30.4 \%$ protein content (Patel et al., 1995), 51.9-60.9\% carbohydrates and 0.58-2.06\% low lipid content (Bravo et al., 1999; Sodani et al., 2004), lysine (Gopalan, 1989), molybdenum (Bravo et al., 1999), phosphorous, iron, and vitamins viz., carotene, vitamin C, riboflavin, niacin and thiamine (Sodani et al., 2004). It is commonly known as poor man's pulse crop because of its drought tolerant nature with enriched health benefits satisfying the nutritional and economic requirement of marginal farmers. This multipurpose legume is primarily cultivated as a food crop in India, Mauritius, Malaysia, Myanmar, Sri Lanka and Nepal, while as fodder crop in Africa and Australia (Asha et al., 2006). In India, horsegram occupies an area of 3.25 lakh ha with a production and productivity of 1.16 lakh tones and $355 \mathrm{~kg} \mathrm{ha}^{-1}$, respectively. Southern India is well thought-out as centre of origin for cultivated species of horsegram (Vavilov, 1951; Zohary, 1970).

The crop is highly photo-sensitive with limited productivity that has led to the replacement of horsegram cultivable areas with other crops. Scientific interventions in horsegram would highly facilitate the crop improvement thereby providing nutritional security in the developing countries. Exploitation of variability for yield, crop duration and ideal stature types would provide an opportunity for evolving superior agronomic types. Chahota et al. (2013) reported the existence of limited variability for desirable traits in Indian germplasm accessions. Moreover, hybridization followed by selection remains futile in horsegram because of small floral buds, extreme flower drop and low percentage of pod set (3-4\%). Adoption of induced mutagenesis would ease crop improvement with shorter time period (Manjaya and Nandanwar, 2007). Horsegram being a diploid crop ($2 \mathrm{n}=20$ and 24), the probability of evolving mutants remains high providing maximum opportunities for selection. Earlier attempts were made on induced mutations in horsegram to explore the effectiveness of different physical (Bolbhat and Dhumal, 2009; Patel et al., 2010) and chemical mutagens (Bolbhat et al., 2012; Kulkarni and Mogle, 2013), but reports on electron beam and its combinations are meagre. Induction of variability through electron beam was found equally effective in relation with gamma rays in legume species (Joshi-Saha et al., 2015; Souframanien et al., 2016). With these views, the experimental study was undertaken to explore the effect of gamma rays (G), electron beam (EB) and combined treatment of gamma rays and electron beam ($\mathrm{G}+\mathrm{EB}$) in inducing variability for yield and its related components in horsegram.

Materials and Methods

A well adopted, horsegram cultivar "PAIYUR 2" released from Tamil Nadu Agricultural University (TNAU), India was utilized for inducing of variability through mutagenesis. Irradiations were
carried out at BhabhaAtomic Research Center (BARC), Trombay, Mumbai, India. The mutagen treated seeds viz., $100 \mathrm{~Gy}, 200 \mathrm{~Gy}$, 300 Gy and 400 Gy of gamma rays, electron beam and G + EB were sown in a randomized block design with two replications, which constituted M_{1} population. Assessment of plant injuries at M_{1} generation a paved way in determining suitable doses for variability induction.

Each M ${ }_{1}$ plant from 200 Gy and 300 Gy of gamma rays; 100 Gy and 200 Gy of electron beam and 100 Gy of G + EB was harvested individually and forwarded to M_{2} generation following plant to progeny row method during 2018. Data on 12 biometrical traits viz., days to first flowering, days to maturity, plant height (cm), pod length (cm), number of primary branches per plant, number of pods per cluster, number of clusters per plant, number of pods per plant, number of seeds per pod, hundred seed weight (g), biological yield (g) and single plant yield (g) were recorded for randomly selected 150 normal looking plants similar to control (PAIYUR 2) in each M_{2} population. The selected individual genotypes on seed yield basis were forwarded to M_{3} generation as progeny rows during 2019. Similar biometrical observations were recorded among the progenies of selected mutant families in M_{3} generation. All the mutant generations were raised at experimental plot of Department of Pulses, TNAU during Rabiseason.

Commercial package of practices was adopted with a spacial pattern of $30 \times 15 \mathrm{~cm}$ in all generations. High order statistics viz., skewness and kurtosis (Snedecor and Cochran, 1967) were performed in M_{2} population for each mutagen to determine the magnitude of induced micro-mutations. The biometrical data of M_{2} and M_{3} population were utilized to estimate mean, range, genotypic coefficient of variation (GCV), phenotypic coefficient of variation (PCV) (Burton, 1952), broad sense heritability (H^{2}) (Lush, 1940), genetic advance as percent of mean (GAM) (Johnson et al., 1955) which provide information on nature and magnitude of variability present in the segregating population and the extent of trait improvement over selection. The estimation of first, second and high order statistics for segregating population are as follows:

First and second order statistics: The variance obtained from the control was taken as error variance ($\left.\sigma^{2} \mathrm{e}\right)$. The occurrence of variance in mutant population was considered as phenotypic variance ($\sigma^{2} p$). The genotypic variance ($\sigma^{2} g$) was given by the difference between phenotypic and error variance.

Genotypic Coefficient of Variation (GCV) $=\sqrt{ }\left(\sigma^{2} g\right) / M e a n \times 100$
Phenotypic Coefficient of Variation (PCV) $=\sqrt{ }\left(\sigma^{2} p\right) /$ Mean $\times 100$
Heritability $($ B.S $)\left(H^{2}\right)=\left(\sigma^{2} g / \sigma^{2} p\right) \times 100$
Genetic Advance $(G A)=\left(\sigma^{2} g / \sigma^{2} p\right) \times k \times \sqrt{ }\left(\sigma^{2} p\right)(k=$ selection differential)
High order statistics: The frequency distribution pattern was assessed in M_{2} population by the estimates of skewness $\left(\beta_{1}\right)$ and kurtosis $\left(\beta_{2}\right)$ using SPSS software.

$$
\begin{gathered}
\text { Skewness }=\frac{\left(n \sum(Y-\mu)^{3}\right.}{(n-1)(n-2) \sigma^{3}} \\
\text { Kurtosis }=\frac{n(n+1) \sum(Y-\mu)^{4}}{(n-1)(n-2)(n-3) \sigma^{4}}-\frac{3(n-1)^{2}}{(n-2)(n-3)}
\end{gathered}
$$

n is the number of observations; Y is the individual observation; μ is the sample mean and σ is the standard deviation.

Results and Discussion

Improvement of yield and its related components were found promising in many legume species through induced mutagenesis. Datir (2016) reported the effectiveness of conventional mutagens (gamma rays, ethyl methane sulphonate, sodium azide and combinations) in generation of variants for polygenic traits in horsegram. The mutation induction through
electron beam has proved to be promising because of its high absorbed dosage rate than gamma rays and other radiations (Zhu et al., 2008). The high dosage rate results in increased double stranded DNA breaks leading to induction of several mutations in a population. Therefore, the present study was undertaken to explore the extent of variability induced by gamma rays, electron beam and its combinations in horsegram.

Statistical analyses on M_{2} population would be highly beneficial in predicting the induction of micro-mutations (Scossiroli, 1977; Oladosu et al., 2016). Most of the mutant population of M_{2} generation exhibited low average mean compared to control for all quantitative traits, except days to first flowering, days to maturity and plant height (Table 1). The shift in mean towards negative direction resulted due to the deleterious effect of employed mutagens on yield component traits. The prolonged duration in flowering and maturity among mutant population has been reported earlier by Rudraswami et al. (2006) in horsegram and Manjaya and Nandanwar (2007) in soybean.

Fig. 1: Frequency distribution pattern of M_{2} generation for single plant yield in the irradiated population of: (a) gamma rays; (b) electron beam and (c) gamma rays+electron beam.
Table 1: Mean, Shift in mean, range and variance for quantitative traits in M_{2} population of horsegram cv. PAIYUR 2

Traits	Treatment	Mean	Shift in mean	Range	Variance	Traits	Treatment	Mean	Shift in mean	Range	Variance
Days to first flowering	CONTROL	51.17 ± 0.13	-	54.00-49.00	2.38	Number of clusters per plant	CONTROL	47.41 ± 0.23		58.00-44.00	7.73
	G: 200 Gy	53.16 ± 0.21	1.99	59.00-50.00	6.77		$\mathrm{G}: 200 \mathrm{~Gy}$	46.30 ± 0.47	- 1.11	55.00-36.00	32.60
	G: 300 Gy	52.40 ± 0.23	1.23	59.00-43.00	7.99		$\mathrm{G}: 300 \mathrm{~Gy}$	43.71 ± 0.54	- 3.70	66.00-28.00	43.22
	EB: 100 Gy	53.46 ± 0.21	2.29	61.00-47.00	6.63		EB: 100 Gy	41.97 ± 0.75	- 5.44	91.00-31.00	83.23
	EB: 200 Gy	53.83 ± 0.21	2.66	61.00-45.00	6.77		EB: 200 Gy	38.85 ± 0.49	- 8.56	61.00-21.00	37.38
	G+EB: 100 Gy	51.17 ± 0.17	0.00	61.00-47.00	4.30		G+EB: 100 Gy	31.14 ± 0.54	- 16.27	54.00-24.00	43.65
	CONTROL	105.60 ± 0.15	-	110.00-102.00	3.38		CONTROL	111.47 ± 0.51	-	124.00-105.00	38.97
Days to maturity	G: 200 Gy	108.23 ± 0.32	2.63	115.00-103.00	14.80	Number of pods per plant	G: 200 Gy	70.85 ± 1.09	-40.62	105.00-52.00	177.86
	G: 300 Gy	106.64 ± 0.27	1.04	116.00-92.00	10.51		$\mathrm{G}: 300 \mathrm{~Gy}$	69.30 ± 1.24	- 42.17	142.00-42.00	230.82
	EB: 100 Gy	107.74 ± 0.32	2.14	120.00-101.00	14.89		EB: 100 Gy	84.72 ± 1.01	- 26.74	157.00-34.00	152.12
	EB: 200 Gy	107.09 ± 0.30	1.49	120.00-94.00	13.62		EB: 200 Gy	68.55 ± 1.09	- 42.92	142.00-38.00	177.78
	G+EB: 100 Gy	108.44 ± 0.33	2.84	114.00-100.00	16.02		G+EB: 100 Gy	52.01 ± 1.14	- 59.46	162.00-28.00	194.36
	CONTROL	72.29 ± 0.37		80.90-64.10	20.46		CONTROL	5.32 ± 0.02	-	5.70-4.68	0.09
Plant height (cm)	G: 200 Gy	83.17 ± 0.85	10.88	102.30-60.20	108.34	Number of seeds per pod	$\mathrm{G}: 200 \mathrm{~Gy}$	5.25 ± 0.04	- 0.07	6.00-4.33	0.22
	G: 300 Gy	87.00 ± 0.65	14.71	118.20-48.60	62.12		$\mathrm{G}: 300 \mathrm{~Gy}$	5.43 ± 0.04	0.11	6.45-4.18	0.27
	EB: 100 Gy	74.40 ± 0.89	2.11	140.30-53.20	117.42		EB: 100 Gy	5.26 ± 0.04	-0.06	6.00-4.00	0.21
	EB: 200 Gy	91.22 ± 1.11	18.93	161.20-51.30	182.88		EB: 200 Gy	5.63 ± 0.05	0.31	6.67-4.33	0.35
	G+EB: 100 Gy	76.84 ± 1.05	4.55	165.20-44.50	163.02		G+EB: 100 Gy	5.59 ± 0.05	0.26	6.67-4.00	0.32
Pod length (cm)	CONTROL	5.12 ± 0.02	-	5.51-4.50	0.05		CONTROL	3.94 ± 0.01		4.11-3.81	0.01
	G: 200 Gy	4.57 ± 0.04	- 0.55	5.63-3.18	0.25	Hundred seed weight (g)	G: 200 Gy	3.43 ± 0.02	- 0.50	4.54-3.06	0.04
	G: 300 Gy	4.65 ± 0.03	- 0.47	6.12-4.00	0.15		G: 300 Gy	3.68 ± 0.02	- 0.26	4.15-3.11	0.06
	EB: 100 Gy	4.74 ± 0.04	- 0.37	5.70-3.40	0.25		EB: 100 Gy	3.80 ± 0.01	- 0.13	4.49-3.11	0.03
	EB: 200 Gy	4.80 ± 0.03	- 0.31	5.73-3.70	0.13		EB: 200 Gy	3.88 ± 0.02	- 0.06	4.52-3.44	0.04
	G+EB: 100 Gy	4.81 ± 0.04	-0.31	5.77-3.18	0.20		G+EB: 100 Gy	3.74 ± 0.01	-0.20	4.15-3.32	0.02
	CONTROL	8.62 ± 0.04	-	10.00-7.00	0.26		CONTROL	64.62 ± 0.24		69.00-61.00	8.93
Number of primary branches per plant	$\mathrm{G}: 200 \mathrm{~Gy}$	7.24 ± 0.08	-1.38	11.00-5.00	1.06	Biological yield (g)	$\mathrm{G}: 200 \mathrm{~Gy}$	65.49 ± 0.43	0.87	82.00-55.00	27.63
	$\mathrm{G}: 300 \mathrm{~Gy}$	7.40 ± 0.10	-1.23	12.00-5.00	1.49		$\mathrm{G}: 300 \mathrm{~Gy}$	62.62 ± 0.55	-2.00	112.00-51.00	45.38
	EB: 100 Gy	7.93 ± 0.08	- 0.69	10.00-6.00	0.94		EB: 100 Gy	66.70 ± 0.73	2.08	125.00-36.00	78.21
	EB: 200 Gy	7.02 ± 0.07	-1.60	11.00-4.00	0.79		EB: 200 Gy	60.69 ± 0.52	-3.93	70.00-47.00	39.60
	G+EB: 100 Gy	6.68 ± 0.08	-1.95	10.00-4.00	0.98		G+EB: 100 Gy	62.86 ± 0.50	-1.77	95.00-56.00	37.59
	CONTROL	2.83 ± 0.01	-	2.92-2.51	0.02	Single plant yield (g)	CONTROL	27.86 ± 0.10	-	28.91-25.21	1.40
Number of pods per cluster	$\mathrm{G}: 200 \mathrm{~Gy}$	2.25 ± 0.02	- 0.59	2.99-1.67	0.04		$\mathrm{G}: 200 \mathrm{~Gy}$	23.52 ± 0.16	-4.34	36.63-20.40	3.58
	$\mathrm{G}: 300 \mathrm{~Gy}$	2.01 ± 0.02	- 0.82	2.85-1.52	0.04		$\mathrm{G}: 300 \mathrm{~Gy}$	23.59 ± 0.47	-4.27	52.32-14.22	34.35
	EB: 100 Gy	2.13 ± 0.03	- 0.70	3.67-1.67	0.11		EB: 100 Gy	22.86 ± 0.23	-5.00	42.86-18.53	7.50
	EB: 200 Gy	1.76 ± 0.02	-1.07	2.67-1.33	0.04		EB: 200 Gy	21.36 ± 0.16	-6.50	41.99-19.21	4.00
	G+EB: 100 Gy	2.09 ± 0.02	-0.74	3.41-1.67	0.07		G+EB: 100 Gy	18.19 ± 0.29	-9.68	47.13-16.31	12.42

Table 2: Estimates of frequency distribution pattern in M_{2} population of horsegram cv. PAIYUR2

Traits	Treatments	Skewness	Kurtosis	Traits	Mutagen	Skewness	Kurtosis
Days to first flowering	G	- 0.21	0.23	Number of clusters per plant	G	0.59*	-0.48
	EB	- 0.44*	0.41		EB	2.14*	10.40*
	$G+E B$	-0.49*	2.48*		G + EB	0.61*	-0.09
Days to maturity	G	0.38*	0.32		G	0.58*	1.06*
	EB	0.89*	2.17*	Number of pods per plant	EB	0.51*	5.19*
	$G+E B$	0.35	-1.47*		G + EB	$3.42{ }^{*}$	25.10*
	G	-0.18	0.94*		G	0.10	-0.89*
Plant height (cm)	EB	1.54*	5.42*	Number of seeds per pod	EB	-0.07	-0.51
	G + EB	3.71*	20.23*		G + EB	-0.47*	-0.18
	G	0.02	0.14		G	0.48*	0.41
Pod length (cm)	EB	-0.30*	0.39	Hundred seed weight (g)	EB	0.18	2.79*
	$G+E B$	-0.72*	0.74		$G+E B$	0.23	2.07*
	G	0.51*	1.21*		G	2.59*	15.60*
Number of primary branches per plant	EB	0.17	0.26	Biological yield (g)	EB	1.86*	15.73*
	$G+E B$	0.99*	0.91*		$G+E B$	1.97*	5.05*
	G	0.47 *	1.36*		G	$2.42{ }^{*}$	9.88*
	EB	1.24*	2.39*	Single plant yield (g)	EB	4.05*	26.50*
	G + EB	0.83*	3.86*		G + EB	4.86*	29.76*

G - Gamma rays; EB - Electron beam; * Significant at 0.05\%

Both positive (G: 300 Gy; EB: 200 Gy and G + EB: 100 Gy) and negative shift (G: 200 Gy and EB: 100 Gy) in mean value were noticed for number of seeds per pod among mutagenic treatments of PAIYUR 2. A decline in number of seeds per pod was observed earlier by Bolbhat and Dhumal (2012) in gamma rays and EMS treated population of horsegram. A similar trend was registered for single plant yield in all mutant population of PAIYUR 2 with the highest reduction at $\mathrm{G}+\mathrm{EB}$ combination (9.68 g). A decline in yield may be attributed to frequent occurrence of deleterious alleles in a population. However, several superior mutants were identified in all treatments with increased yield range than control. All the mutagenic treatments exhibited wide range of variation as compared to control (Table 1) indicating the occurrence of micro-mutants in a positive and negative direction for the studied traits. High order statistics viz., skewness (β_{1}) and kurtosis $\left(\beta_{2}\right)$ provide a better insight in predicting the magnitude and direction of micro-mutations in a population (Misra et al., 2008; Kar et al., 2019). Most of the mutant population exhibited significant skewness and kurtosis indicating the potentiality of employed mutagens in induction of variants (Table2).

The positive skewed distribution (G: 2.42, EB: 4.05 and G+EB: 4.86) with leptokurtic curve (G: 9.88 , EB: 26.50 and G+EB: 29.76) was registered for single plant yield in all irradiated treatments. It implies the occurrence of micro-mutants towards reduction in trait value with presence of extremities over the control range in a population (Fig. 1). Similarly, a leptokurtic curve with skewed pattern towards right was registered in all treated population for biological yield, number of pods per plant, number of pods per cluster and plant height. A sharp curve signifies the presence of outliers or extreme variants in the population providing scope for concerned trait improvement.

Adoption of intense selection in mutant population will result in genetic gain for these traits (Roy, 2000).

The electron beam irradiated population exhibited nonsignificant skewness and kurtosis for number of primary branches per plant ($\beta_{1}: 0.17$ and $\beta_{2}: 0.26$) and number of seeds per pod ($\beta_{1}:-$ 0.07 and $\beta_{2}:-0.51$) indicating random occurrence of micromutants at both directions. Balint et al. (1968) reported equal distribution of micro-mutants in either direction for most of the polygenic traits. The induction of micro-mutants with increased trait value was noticed in electron beam ($\beta_{1}:-0.44$) and its combination ($\beta_{1}:-0.49$) treatment for days to first flowering. A flattened curve than normal (Platykurtic) was exhibited by $G+E B$ (β_{2} : -1.47) mutant population indicating less frequency of superior mutants for maturing duration. The occurrence of variants with increased value for pod length was noticed in electron beam (β_{1} :0.30) and its combination with gamma rays ($\beta_{1}:-0.72$). From the estimates, it is evident that mutagens were potential in inducing extreme variant types for most of the yield components. The occurrence of transgressive variants was analyzed to determine the scope of isolating mutants with improvement in yield component traits (Misra etal., 2008).

The estimates provide clear picture on the extent of variation induced by the mutagens in comparison with control (Table 3). The genotype of M_{2} population possessing value higher than the highest trait value of control was considered as positive transgressive variant (PTV) and the trait value lower than the lowest value of control as negative transgressive variant (NTV). The average and maximum transgressive variation were worked out for the PTV's and NTV's to identify the extent of deviations from the control. The negative transgressive variants were
Table 3: Frequency and magnitude of transgressive variants in M_{2} population of horsegram cv. PAIYUR 2

Traits	Treatment	NTVF	NTVM	NTVA	MNTV	Traits	Treatment	PTVF	PTVM	PTVA	MPTV
Days to first flowering	G: 200 Gy	00	-	-	-	Number of clusters per plant	G: 200 Gy	00	-	-	-
	$\mathrm{G}: 300 \mathrm{~Gy}$	02	44.00	5.00	6.00		$\mathrm{G}: 300 \mathrm{~Gy}$	04	60.75	2.75	8.00
	EB: 100 Gy	02	47.00	2.00	2.00		EB: 100 Gy	04	80.00	22.00	33.00
	EB: 200 Gy	01	45.00	4.00	4.00		EB: 200 Gy	01	61.00	3.00	3.00
	G+EB: 100 Gy	06	47.50	1.50	2.00		G+EB: 100 Gy	00	-	-	-
	G: 200 Gy	00	-	-	-		G: 200 Gy	00	-	-	-
Days to maturity	G: 300 Gy	01	92.00	10.00	10.00	Number of pods per plant	$\mathrm{G}: 300 \mathrm{~Gy}$	01	142.00	18.00	18.00
	EB: 100 Gy	01	101.00	1.00	1.00		EB: 100 Gy	02	152.50	28.50	33.00
	EB: 200 Gy	06	100.00	2.00	8.00		EB: 200 Gy	02	136.50	12.50	18.00
	G+EB: 100 Gy	02	100.50	1.50	2.00		G+EB: 100 Gy	05	159.67	35.67	38.00
	$\mathrm{G}: 200 \mathrm{~Gy}$	08	61.14	2.96	3.90		$\mathrm{G}: 200 \mathrm{~Gy}$	23	6.00	0.30	0.30
Plant height (cm)	G: 300 Gy	01	48.60	15.50	15.50	Number of seeds per pod	G: 300 Gy	31	6.13	0.43	0.75
	EB: 100 Gy	06	60.17	3.93	10.90		EB: 100 Gy	12	6.00	0.30	0.30
	EB: 200 Gy	02	51.71	12.39	12.78		EB: 200 Gy	41	6.23	0.53	0.97
	G+EB: 100 Gy	03	52.80	11.30	19.60		G+EB: 100 Gy	44	6.19	0.49	0.97
Traits	Treatment	PTVF	PTVM	PTVA	MPTV	Traits	Treatment	PTVF	PTVM	PTVA	MPTV
	$\mathrm{G}: 200 \mathrm{~Gy}$	02	5.63	0.12	0.12		$\mathrm{G}: 200 \mathrm{~Gy}$	01	4.54	0.43	0.43
Pod length (cm)	G: 300 Gy	02	5.90	0.39	0.61	Hundred seed weight (g)	$\mathrm{G}: 300 \mathrm{~Gy}$	13	4.13	0.02	0.04
	EB: 100 Gy	09	5.60	0.09	0.19		EB: 100 Gy	05	4.41	0.30	0.38
	EB: 200 Gy	03	5.73	0.22	0.22		EB: 200 Gy	19	4.22	0.11	0.41
	G+EB: 100 Gy	04	5.59	0.08	0.26		G+EB: 100 Gy	04	4.15	0.04	0.04
	G: 200 Gy	01	11.00	1.00	1.00		$\mathrm{G}: 200 \mathrm{~Gy}$	38	71.11	2.11	13.00
Number of primary branches per plant	$\mathrm{G}: 300 \mathrm{~Gy}$	01	12.00	2.00	2.00	Biological yield (g)	$\mathrm{G}: 300 \mathrm{~Gy}$	03	102.00	33.00	43.00
	EB: 100 Gy	00	-	-	-		EB: 100 Gy	19	81.60	12.60	56.00
	EB: 200 Gy	01	11.00	1.00	1.00		EB: 200 Gy	02	70.00	1.00	1.00
	G+EB: 100 Gy	00	-	-	-		G+EB: 100 Gy	23	74.83	5.83	26.00
	$\mathrm{G}: 200 \mathrm{~Gy}$	02	2.99	0.07	0.07		$\mathrm{G}: 200 \mathrm{~Gy}$	02	32.92	4.01	7.72
Number of pods per cluster	$\mathrm{G}: 300 \mathrm{~Gy}$	00	-	-	-		$\mathrm{G}: 300 \mathrm{~Gy}$	08	37.32	8.41	23.41
	EB: 100 Gy	02	3.50	0.58	0.75	Single plant yield (g)	EB: 100 Gy	06	32.73	3.82	13.95
	EB: 200 Gy	00	-	-	-		EB: 200 Gy	05	39.74	10.83	13.08
	G+EB: 100 Gy	01	3.41	0.49	0.49		G+EB: 100 Gy	10	41.81	12.90	18.22

G - Gamma ray; EB - Electron beam; PTVF - Frequency of positive transgressive variants; PTVA - Average positive transgressive variation; PTVM - Mean of positive transgressive variants; MPTV Maximum positive transgressive variation; NTVF - Frequency of negative transgressive variants; NTVM - Mean of negative transgressive variants; NTVA - Average negative transgressive variation and MNTV - Maximum negative transgressive variation

Table 4: Identified desirable doses for the induction of transgressive variants in horsegram cv. PAIYUR2

Characters	Mutagenic doses
Days to first flowering	$\mathrm{G}(300 \mathrm{~Gy})$
Days to maturity	$\mathrm{EB}(200 \mathrm{~Gy})$
Plant height (cm)	$\mathrm{G}+\mathrm{EB}(100 \mathrm{~Gy})$
Pod length (cm)	$\mathrm{G}(300 \mathrm{~Gy})$ and EB (200 Gy)
Number of primary branches	-
per plant	
Number of pods per cluster	$\mathrm{EB}(100 \mathrm{~Gy})$
Number of clusters per plant	$\mathrm{EB}(100 \mathrm{~Gy})$
Number of pods per plant	$\mathrm{EB}(100 \mathrm{~Gy})$ and G+EB (100 Gy)
Number of seeds per pod	$\mathrm{EB}(200 \mathrm{~Gy})$ and $\mathrm{G}+\mathrm{EB}(100 \mathrm{~Gy})$
Hundred seed weight (g)	$\mathrm{EB}(100 \mathrm{~Gy})$
Biological yield (g)	$\mathrm{EB}(100 \mathrm{~Gy})$
Single plant yield (g)	$\mathrm{G}(300 \mathrm{~Gy}), \mathrm{EB}(200 \mathrm{~Gy})$ and
	$\mathrm{G}+\mathrm{EB}(100 \mathrm{~Gy})$

G-Gamma rays; EB-Electron beam
considered for days to first flowering and days to maturity in this study. The effective doses were selected on the basis of high occurrence coupled with high average and maximum variation from control. The identified promising doses for extreme variants serve as a component in planning for improving of polygenic traits in horsegram (Table 4). Among the mutagens, G + EB: 100 Gy followed by G: 300 Gy induced high frequency (10 and 08) of superior types with high average (12.90 and 8.41) and maximum transgressive variation (18.22 and 23.41) for single plant yield. These mutagenic doses can be employed in future mutation breeding programmes to achieve extreme variants with enhanced yield (>8 g) over control. The high frequency (06) of early duration types was noticed in 200 Gy electron beam irradiated population exhibiting variation range of 2 (NTVA) to 8 (MNTV) days over control. A wide variation was noticed among mutagenic treatments for occurrence of transgressive types. Among the mutagens, lower dose of electron beam (100 Gy) were found promising in inducing extreme variants for most of the studied yield component traits.

The estimates of mean \pm standard error, shift in mean, range and variance of M_{3} population are presented in Table 5. The shift in mean towards positive and negative direction was observed in mutagenic treatments which contributed towards increased variance over control. Among mutagens, combination of $G+E B$ exhibited the highest shift in mean value for single plant yield (11.57 g), number of clusters per plant (38.33) and number of pods per plant (17.40). The increased plant height $(146.37 \mathrm{~cm})$ coupled with biological yield (121.26 g) in 300 Gy of gamma rays irradiated population seems to be useful for evolving mutant lines with superior fodder value. The extreme range than control was noticed for most of the yield component traits in mutant progenies of M_{3} population. Implementation of selection on mutant progenies would assist in identifying promising lines with improved agronomic value. The mean of
single plant yield increased from M_{2} to M_{3} generation with induction of superior mutants in all irradiated treatments. Imposing direct selection on yield basis in M_{2} generation could be a reason for positive shift in mean value (Khan and Qureshi, 2006). The extreme mutants yielding more than 70 g (G: 300 Gy , EB: 200 Gy and G + EB: 100 Gy) were isolated in M_{3} generation, which provide scope for yield enhancement in horsegram. A positive shift in mean was observed at all mutagenic treatments of M_{2} and M_{3} generations for plant height. The increase in mean value over control could be attributed to frequent induction of positive mutations for the trait (Khan and Wani, 2006).

The mean of hundred seed weight, number of clusters per plant, number of pods per plant and biological yield had shifted to positive direction in M_{3} generation. A parallel report of positive shift in mean value for polygenic traits was given by Khan et al. (2004). Contrarily, decreased mean value was registered for number of primary branches per plant in both generations (M_{2} and M_{3}) when compared against control. The induction of mutations with detrimental effects could be reason for reduced mean values in treated population (Singh et al., 2000). The mean of days to first flowering and maturity declined in M_{3} population compared to control with few exceptions. Mutants with reduced duration would escape from yield loss due to terminal drought as horsegram is cultivated with residual moisture after the end of North-East monsoon in Southern India. Similar early maturing genotypes were reported by Nilahayati et al. (2019) in gamma irradiated population of soybean. The shift in mean at both positive and negative directions was noticed in mutant population compared to control for number of seeds per pod. Similar report on quantitative traits was given by Mensah and Obadoni (2007) in groundnut. The extent of variability, heritability at broad sense $\left(\mathrm{H}^{2}\right)$ and genetic advance as percent of mean (GAM) were calculated for M_{2} (Table 6) and M_{3} populations (Table 7).

Low to moderate variability existed for most of the yield component traits in M_{2} generation with few exceptions. The low extent of PCV and GCV was registered for days to first flowering and maturity at both generations. In general, the amount of variability increased in M_{3} generation for most of the yield component traits in comparison with M_{2} indicating the release of inherent variability. Traits viz., single plant yield, biological yield, number of clusters per plant, number of pods per plant, number of pods per cluster and number of primary branches per plant exhibited high values of PCV and GCV in M_{3} generation. Increase in variability estimate provides scope for realizing yield improvement through effective selection (Muduli and Misra, 2008). The estimates of heritability and genetic advance are highly useful in predicting the selection response on quantitative traits. In this study, the estimates of H^{2} and GAM tend to increase in M_{3} generation for most of the yield component traits with few exceptions. The enhanced heritability in subsequent generation could also be an indicative feature of increased homozygosity of genes for the concerned trait (Wani, 2011). The high H^{2} coupled with high GAM indicates the governance of additive gene effects
Table 5: Mean, Shift in mean, range and variance for quantitative traits in M_{3} generation of horsegram cv. PAIYUR 2

| Traits | Treatment | Mean | Shift in | Range | Variance | Traits | Treatment | Mean | Shift in | Range |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | |
| mean | | | | | | | | | | |

Table 6: Estimates of variability parameters, heritability and genetic advance in M_{2} population of horsegram cv. PAIYUR2

Traits	Treatment	PCV (\%)	GCV (\%)	H^{2} (\%)	GAM (\%)	Traits	Treatment	PCV (\%)	GCV (\%)	H^{2} (\%)	GAM (\%)
	G: 200 Gy	4.53	3.64	64.32	6.01	Number of clusters per plant	G: 200 Gy	12.30	10.73	76.14	19.29
Days to	G: 300 Gy	4.74	3.87	66.56	6.51		G: 300 Gy	15.05	13.64	82.13	25.47
first	EB: 100 Gy	4.47	3.57	63.70	5.87		EB: 100 Gy	21.80	20.77	90.76	40.75
flowering	EB: 200 Gy	4.49	3.61	64.51	5.97		EB: 200 Gy	15.52	13.77	78.72	25.17
	G+EB: 100 Gy	3.77	2.52	44.66	3.47		G+EB: 100 Gy	21.28	19.32	82.39	36.12
	G: 200 Gy	3.57	3.13	77.21	5.67		G: 200 Gy	18.85	16.66	78.06	30.32
Days to maturity	G: 300 Gy	3.05	2.51	67.87	4.26	Number of pods per plant	G: 300 Gy	20.24	18.11	80.09	33.39
	EB: 100 Gy	3.59	3.16	77.35	5.72		EB: 100 Gy	14.60	12.60	74.42	22.39
	EB: 200 Gy	3.46	3.00	75.25	5.36		EB: 200 Gy	19.48	17.20	78.04	31.31
	G+EB: 100 Gy	3.68	3.26	78.69	5.97		G+EB: 100 Gy	26.87	24.02	79.95	44.25
Plant height (cm)	G: 200 Gy	12.47	11.23	81.02	20.82	Number of seeds per pod	G: 200 Gy	8.91	6.81	58.34	10.71
	G: 300 Gy	9.08	7.45	67.30	12.59		G: 300 Gy	9.55	7.76	66.09	13.00
	EB: 100 Gy	14.61	13.29	82.72	24.90		EB: 100 Gy	8.78	6.65	57.30	10.37
	EB: 200 Gy	14.87	14.02	88.90	27.23		EB: 200 Gy	10.54	9.07	74.10	16.09
	G+EB: 100 Gy	16.66	15.59	87.53	30.04		G+EB: 100 Gy	10.08	8.51	71.23	14.79
Pod length (cm)	G: 200 Gy	10.79	9.54	78.17	17.38	Hundred seed weight (g)	G: 200 Gy	6.06	5.31	76.91	9.59
	G: 300 Gy	8.33	6.70	64.67	11.10		G: 300 Gy	6.70	6.13	83.56	11.54
	EB: 100 Gy	10.56	9.38	78.88	17.16		EB: 100 Gy	4.75	3.95	69.34	6.78
	EB: 200 Gy	7.50	5.77	59.19	9.15		EB: 200 Gy	5.18	4.49	75.24	8.02
	G+EB: 100 Gy	9.21	7.87	73.02	13.86		G+EB: 100 Gy	3.42	2.13	38.92	2.74
Number of primary branches per plant	G: 200 Gy	14.28	12.41	75.55	22.22	Biological yield (g)	G: 200 Gy	8.04	6.62	67.75	11.22
	G: 300 Gy	16.49	14.97	82.42	28.00		G: 300 Gy	10.79	9.68	80.41	17.88
	EB: 100 Gy	12.28	10.45	72.44	18.32		EB: 100 Gy	13.30	12.52	88.64	24.29
	EB: 200 Gy	12.73	10.44	67.25	17.63		EB: 200 Gy	10.40	9.16	77.56	16.62
	G+EB: 100 Gy	14.85	12.72	73.42	22.46		G+EB: 100 Gy	9.77	8.54	76.30	15.36
Number of pods per cluster	G: 200 Gy	8.85	6.97	62.07	11.32	Single plant yield (g)	G: 200 Gy	8.06	6.29	60.88	10.10
	G: 300 Gy	10.13	8.10	63.89	13.33		G: 300 Gy	24.58	24.06	95.82	48.52
	EB: 100 Gy	15.37	14.25	85.99	27.23		EB: 100 Gy	12.02	10.84	81.40	20.15
	EB: 200 Gy	11.35	8.96	62.28	14.56		EB: 200 Gy	9.38	7.57	65.03	12.57
	G+EB: 100 Gy	12.04	10.52	76.28	18.93		G+EB: 100 Gy	19.43	18.30	88.75	35.51

PCV (\%) - Phenotypic coefficient of variation; GCV (\%) - Genotypic coefficient of variation; $H^{2}(\%)$ - Heritability at broad sense; GAM (\%) - Genetic advance as per cent of mean; G-Gamma rays and EB Electron beam
Table 7: Estimates of variability parameters, heritability and genetic advance in M_{3} population of horsegram cv. PAIYUR2

Traits	Treatment	PCV (\%)	GCV (\%)	H^{2} (\%)	GAM (\%)	Traits	Treatment	PCV (\%)	GCV (\%)	H^{2} (\%)	GAM (\%)
Days to first flowering	G: 200 Gy	4.17	2.26	29.35	2.52	Number of clusters per plant	G: 200 Gy	19.61	18.61	90.03	36.37
	G: 300 Gy	4.36	2.47	32.27	2.90		$\mathrm{G}: 300 \mathrm{~Gy}$	15.58	15.07	93.58	30.03
	EB: 100 Gy	4.90	3.49	50.61	5.11		EB: 100 Gy	36.96	36.45	97.24	74.04
	EB: 200 Gy	5.47	4.26	60.52	6.82		EB: 200 Gy	38.83	38.42	97.89	78.30
	G+EB: 100 Gy	4.05	2.09	26.48	2.21		G+EB: 100 Gy	23.58	23.30	97.63	47.43
	G: 200 Gy	2.41	1.11	21.27	1.06		$\mathrm{G}: 200 \mathrm{~Gy}$	7.34	3.65	24.69	3.73
Days to maturity	G: 300 Gy	3.85	3.20	69.00	5.47	Number of pods per plant	$\mathrm{G}: 300 \mathrm{~Gy}$	20.94	20.06	91.79	39.59
	EB: 100 Gy	3.30	2.47	56.02	3.80		EB: 100 Gy	13.45	11.80	77.07	21.35
	EB: 200 Gy	3.27	2.46	56.58	3.81		EB: 200 Gy	22.08	21.11	91.48	41.60
	G+EB: 100 Gy	3.29	2.52	58.89	3.99		G+EB: 100 Gy	20.04	19.23	92.09	38.02
	G: 200 Gy	13.35	12.53	88.15	24.24		$\mathrm{G}: 200 \mathrm{~Gy}$	11.93	8.86	55.14	13.55
Plant height (cm)	G: 300 Gy	11.72	11.31	93.20	22.50	Number of seeds per pod	$\mathrm{G}: 300 \mathrm{~Gy}$	10.65	7.56	50.37	11.06
	EB: 100 Gy	14.67	14.24	94.27	28.48		EB: 100 Gy	9.48	5.95	39.37	7.69
	EB: 200 Gy	16.83	16.41	95.14	32.98		EB: 200 Gy	10.02	7.48	55.63	11.49
	G+EB: 100 Gy	19.62	19.33	97.05	39.23		G+EB: 100 Gy	7.88	4.16	27.82	4.52
	G: 200 Gy	13.56	11.82	76.04	21.24		$\mathrm{G}: 200 \mathrm{~Gy}$	6.24	3.37	29.09	3.74
Pod length (cm)	G: 300 Gy	13.52	11.58	73.40	20.44	Hundred seed weight (g)	$\mathrm{G}: 300 \mathrm{~Gy}$	6.80	4.74	48.54	6.80
	EB: 100 Gy	10.04	7.26	52.23	10.80		EB: 100 Gy	7.11	5.36	56.78	8.32
	EB: 200 Gy	12.45	10.48	70.91	18.18		EB: 200 Gy	8.70	7.48	74.03	13.26
	G+EB: 100 Gy	12.16	9.87	65.91	16.51		G+EB: 100 Gy	12.00	11.07	85.15	21.05
	G: 200 Gy	17.77	15.70	78.08	28.58		$\mathrm{G}: 200 \mathrm{~Gy}$	7.43	6.91	86.36	13.22
Number of primary branches per plant	G: 300 Gy	29.12	27.71	90.55	54.32	Biological yield (g)	G: 300 Gy	15.30	15.22	98.92	31.18
	EB: 100 Gy	29.89	28.22	89.13	54.88		EB: 100 Gy	31.07	30.96	99.29	63.55
	EB: 200 Gy	28.54	26.79	88.08	51.79		EB: 200 Gy	35.97	35.87	99.42	73.67
	G+EB: 100 Gy	26.15	24.23	85.89	46.26		G+EB: 100 Gy	24.92	24.84	99.36	51.01
	G: 200 Gy	24.90	24.08	93.50	47.97		$\mathrm{G}: 200 \mathrm{~Gy}$	19.90	18.29	84.44	34.61
Number of pods per cluster	G: 300 Gy	20.24	19.46	92.47	38.55	Single plant yield (g)	$\mathrm{G}: 300 \mathrm{~Gy}$	42.32	41.87	97.88	85.33
	EB: 100 Gy	28.28	27.50	94.57	55.10		EB: 100 Gy	33.78	32.95	95.14	66.20
	EB: 200 Gy	24.94	24.28	94.74	48.68		EB: 200 Gy	45.81	45.21	97.41	91.92
	G+EB: 100 Gy	26.58	25.90	94.98	52.00		G+EB: 100 Gy	38.14	37.72	97.81	76.84

PCV (\%) - Phenotypic coefficient of variation; GCV (\%) - Genotypic coefficient of variation; $\mathrm{H}^{2}(\%)$ - Heritability at broad sense; GAM (\%) - Genetic advance as per cent of mean; G-Gamma rays and EB -
for the studied polygenic traits. Similar findings on quantitative traits were reported earlier by Sheeba et al. (2003) and Mensah et al. (2005). Traits viz., days to first flowering and days to maturity exhibited low to moderate H^{2} coupled with low GAM at both generations indicating preponderance of non - additive gene action. A significant improvement in mean of yield and its component traits was observed with increased H^{2} and GAM values. It is evident that selection imposed on M_{2} generation based on single plant yield was highly effective. Similar findings were reported by Solanki and Sharma (2002) in mutant population of lentils. Moreover, variability estimates increased for most of the yield component traits in M_{3} generation indicating further scope of achieving desirable mutants in advanced generations through selection. In a nutshell, the mutagens used in the study were highly promising for inducing desirable variants in horsegram. The combination of $\mathrm{G}+\mathrm{EB}$ was found desirable as it exhibited high amount of transgressive variants (PTVF: 10) coupled with improved genetic gain (GAM: 35.51%) in M_{3} generation for single plant yield. The stability of isolated high yielding mutant progenies will be test verified in subsequent generation. Thus, the delineated superior mutants offer scope for yield realization in horsegram of Southern India.

Acknowledgments

We earnestly acknowledge the Board of Research in Nuclear Sciences for providing the financial support and Dr. S. Dutta, Program Officer, Bhabha Atomic Research Centre (BARC), Professor M. Raveendran, Department of Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU) and Professor P. Jeyakumar, Department of Crop physiology, TNAU for their technical assistance towards this experimental study. The authors are highly thankful to Professor P. Jayamani and Head, Department of Pulses, TNAU for her relentless scientific support.

Add-on Information

Authors' contribution: S. Priyanka: Execution, Data compilation, analysis and manuscript preparation; R. Sudhagar: Conceptualization, methodology, execution, data analysis and supervision; C. Vanniarajan: Data execution, review and editing, fund acquisition; K. Ganesamurthy: Supervision, editing and resources and J. Souframanien: Methodology, review, editing, fund acquisition.

Research content: The research content of manuscript is original and has not been published elsewhere.

Ethical approval: Not applicable

Conflict of interest: The authors declare that there is no conflict of interest.

Data from other sources: Not applicable

Consent to publish: All authors agree to publish the paper in Journal of Environmental Biology.

References

Asha, K.I., M. Latha, Z. Abraham, P.K. Jayan, M.C. Nair and S.K. Mishra: Horsegram in India. In: Genetic Resources (Eds.: D. Kumar). Scientific Publisher, Jodhpur, India, p. 11-28 (2006).
Balint, A., D. Dudits and J. Sutka: Study of quantitative characters of pea in a mutant population. Novenytermeles, 17, 187-196(1968).
Bolbhat, S.N. and K.N. Dhumal: Effect of mutagens on quantitative characters in M2 and M3 generation of horsegram (Macrotyloma uniflorum (Lam.) Verdc). Int. J. Sci. Res., 2, 1-7 (2012).
Bolbhat, S.N. and K.N. Dhumal: Induced macromutations in horsegram [Macrotyloma uniflorum (Lam) Verdc]. Legume Res., 32, 278-281 (2009).

Bolbhat, S.N., V.D. Bhoge and K.N. Dhumal: Induced mutations in horsegram [Macrotyloma uniflorum (LAM) VERDC)]: Chlorophyll mutations, mutagenic efficiency and effectiveness. Int. J. Life Sci. Pharma. Res., 2, 159-168 (2012).
Bravo, L., P. Siddhuraju and F. Saura-Calixto: Composition of underexploited Indian pulses. Comparison with common legumes. Food Chem., 64, 185-192 (1999).
Burton, G.W.: Quantitative inheritance in grass. In: Proc. of $6^{\text {th }}$ International Grassland Congress, p. 24-83(1952).
Chahota, R.K., T.R. Sharma, S.K. Sharma, N. Kumar and J.C. Rana: Horsegram. In: Genetic and Genomic Resources of Grain Legume Improvement, Elsevier Inc. Chapters, pp. 293 (2013).
Datir, S.S.:: Genetic improvement in horsegram [Macrotyloma uniflorum (lam) verdc.] (syn. Dolichos biflorus L.) through induced mutations. J. Food Legumes, 29, 174-179 (2016).

Gopalan, C., B.V. Ramashastri and S.C. Balasubramanyan: Nutritive value of Indian foods. National Institute of Nutrition, ICMR, Hyderabad, India (1989).
Johnson, H.W., H.F. Robinson and R.E. Comstock: Estimates of genetic and environment variability in soybean. Agronomy J., 47, 314-318 (1955).

Joshi-Saha, A., K.S. Reddy, V.C. Petwal and J. Dwivedi: Identification of novel mutants through electron beam and gamma irradiation in chickpea (Cicer arietinum L.). J. Food Legumes, 28, 1-6 (2015).
Kar, R.K., T.K. Mishra and B. Pradhan: Studies on frequency distribution, skewness and kurtosis in $\mathrm{F}_{1} \mathrm{M}_{1}$ mutant populations of sesame. Int. J. Curr. Microbiol. App.Sci., 8, 1755-1760 (2019).

Khan, M.R. and A.S. Qureshi: Induced genetic variability in quantitative traits of kabuli chickpea (Cicer arietinum L.). Proc. Pakistan Acad. Sci., 43, 87-94 (2006).
Khan, S., M.R. Wani and K. Parveen: Induced genetic variability for quantitative traits in Vigna radiata (L.) Wilczek. Pakistan J. Bot., 36, 845-850 (2004).
Khan, S. and M.R. Wani: Induced mutations for yield contributing traits in greengram. Int. J. Agri. Bio., 8, 528-530 (2006).
Kulkarni, G.B. and U.P. Mogle: Effects of mutagen on chlorophyll mutation in horsegram [Macrotyloma uniflorum (Lam) Verdcourt]. Biosci. Discov., 4, 214-219 (2013).
Lush, J.L.: Intra-sire correlations and regression of offspring on dams as a method of estimating heritability of characters. Proc. American Soci. Ani. Prod., 33, 293-301(1940).
Manjaya, J.G. and R.S. Nandanwar: Genetic improvement of soybean variety JS 80-21 through induced mutations. Plant Mut. Rep., 1, 36-40 (2007).
Mensah, J.K. and B. Obadoni: Effect of sodium azide on yield parameters of groundnut (Arachis hypogea L.). African J. Biotech., 6, 668-671 (2007).

Mensah, J.K., P.A. Akomeah and E.O. Ekpekurede: Gamma induced variation of yield parameters in cowpea (Vigna unguiculata (L.) Walp). Global J. Pure. App. Sci., 11, 327-330 (2005).
Misra, R.C., P.K. Sahu, C.R. Jali, H.P. Mishra and L.D. Misra: Studies on skewness, kurtosis and transgressive variation in M2 populations of ricebean (Vigna umbelata) varieties. Legume Res. An. Int. J., 31, 94-99 (2008).
Morris, J.B.: Macrotyloma axillare and M. uniflorum: Descriptor analysis, anthocyanin indexes, and potential uses. Genet. Res. Crop Evol., 55, 5-8 (2008).
Muduli, K.C. and R.C. Misra: Induced polygenic variability in M2 generation and its relationship with production of high yielding mutants in finger millet. Indian J. Genet., 68, 419-425 (2008).
Nilahayati, R., D.S. Hanafiah and F. Harahap: The genotype selection of M_{3} generation of Kipas Putih soybean with gamma-rays irradiation on agronomic characters, early maturity and high yielding mutants. Bulg. J. Agric. Sci., 25, 97-102 (2019).
Oladosu, Y., M.Y. Rafii, N. Abdullah, G. Hussin, A. Ramli, H.A. Rahim, G. Miah and M. Usman: Principle and application of plant mutagenesis in crop improvement: A review. Biotech. Biotech. Equip., 30, 1-16(2016).
Patel, D.P., B.S. Dabas, R.S. Sapra and S. Mandal: Evaluation of horsegram [Macrotyloma uniflorum (Lam.)] germplasm. Nat. Bureau Plant Genet. Res., pp. 37-53(1995).
Patel, N.B., N.B.S. Tikka and J.B. Patel: Effect of gamma rays on different parameters under laboratory and field conditions in M1 generation in horsegram. J. Food Legumes, 23, 14-20 (2010).
Roy, D.: Plant Breeding - The analysis and exploitation of variability. Narosa Publishing House, New Delhi, India (2000).
Rudraswami, P., K.P. Vishwanatha and C. Gireesh: Mutation studies in horsegram (Macrotyloma uniflorum (Lam.) Verdc). Proc., LSS2006, BARC, Mumbai, India, pp. 88-89 (2006).

Scossiroli, R.E.: Mutations in characters with continuous variation. In: Manual on Mutation Breeding (Tech. Rep. Serial No. 19). IAEA, Vienna, pp. 118-123 (1977).
Sheeba, G., S.M. Ibrahim, P. Yogameenakshi and S. Babu: Effect of mutagens on quantitative traits in M2 generation in sesame (Sesamum indicum L.). Indian J. Genet., 63, 173-174 (2003).
Singh, V.P., M. Singh and J.P. Lal: Gamma rays and EMS induced genetic variability for quantitative traits in urdbean (Vigna mungo (L.) Hepper). Indian J. Genet., 60, 89-96 (2000).

Snedecor, G.W. and W.G. Cochran: Statistical Methods. $6^{\text {th }}$ Edn., Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India, p. 593 (1967).
Sodani, S.N., R.V. Paliwal and L.K. Jain: Phenotypic stability for seed yield in rainfed horsegram (Macrotyloma uniflorum (Lam.) Verdc.). In: National Symposium on Arid Legumes for Sustainable Agriculture and Trade, pp. 5-7 (2004).
Solanki, I.S. and B. Sharma: Induced polygenic variability in different groups of mutagenic damage in lentil (Lens culinaris Medik.). Indian J. Genet., 62, 135-139 (2002).
Souframanien, J., K.S. Reddy, V.C. Petwal and J. Dwivedi: Comparative effectiveness and efficiency of electron beam and $60 \mathrm{Co} y$-rays in induction of mutations in blackgram [Vigna mungo (L.) Hepper]. J. Food Legu., 29, 1-6(2016).
Vavilov, N.I.: Phyto-geographic basis of plant breeding. Chron. Bota., 13, 13-54 (1951).
Wani, A.A.: Induced polygenic variability for quantitative traits in chickpea var. Pusa-372. Comuni. Sci., 2, 100-106 (2011).
Zhu, H., J.Z. Xu, S.Q. Li, X.Y. Sun, S.D. Yao and S.L. Wang: Effects of high energy pulse-electron beam radiation on biomacromolecules. Sci. China Ser. B: Chem., 51, 86-91 (2008).
Zohary, D.: Centers of diversity and centers of origin. In: Genetic Resources in Plants (Eds.: O.H. Frankel and F. Bennett). Oxford, Blackwell Scientific Publications, pp. 33-42 (1970).

